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Abstract In the present article, a numerical method is proposed for the numerical solution of
the KdV equation by using a new approach by combining cubic B-spline functions. In

this paper we convert the KdV equation to system of two equations. The method is

shown to be unconditionally stable using von-Neumann technique. To test accuracy
the error norms L2, L∞ are computed. Three invariants of motion are predestined

to determine the preservation properties of the problem and the numerical scheme

leads to careful and active results. Furthermore, interaction of two and three solitary
waves is shown. These results show that the technique introduced here is easy to

apply.
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1. Introduction

We will solve the KdV equation in this form [9]

ut + ε uux + µ uxxx = 0, (1.1)

where ε, µ are positive parameters and the subscripts x and t denote differentiation.
The boundary conditions of (1.1) are given by.

u(a, t) = f1(a, t), u(b, t) = f2(b, t),
ux(a, t) = g1(a, t), ux(b, t) = g2(b, t), 0 ≤ t ≤ T. (1.2)
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And initial conditions of (1.1) are given by

u(x, 0) = f(x),
ux(x, 0) = f ′(x) = g(x), a ≤ x ≤ b. (1.3)

KdV equation is prototypical example of exactly solvable mathematical paradigm
of waves on shallow water superficies. It grow for evolution, interaction of waves, and
generation in physics. Due to the term ut, (1.1) is called the evolution equation, the
nonlinear term causes the steepness of the wave, and the dispersive term defines the
spreading of the wave. It is known that the influence of the steepness and spreading
results in soliton solutions for the KdV equation.

The KdV equation is a one-dimensional nonlinear partial differential equation of
third order, which plays a big role in the discussion of nonlinear dispersive waves.
This equation was primarily derived by Korteweg-de Vries [4] to characterize the
action of one dimensional shallow water solitary waves. Solitary waves are wave
packets or pulses which diffuse in nonlinear dispersive media. For stable solitary wave
solutions the nonlinear and dispersive terms in the KdV equation must equilibrium
and in this status the KdV equation has wandering wave solutions called solitons.
A soliton is a very particular type of solitary waves which save its waveform after
inconsistency with other solitons. A small time solutions using a heat balance integral
method to solve the KdV equation was gained by Kutluay et al. [9]. In their article,
comprehensive comparisons with the analytical values over the acquaint interval are
given. Bahadir [1] studied the exponential finite-difference technique to solve the KdV
equation. This method has been shown to supply higher accuracy than the classical
explicit finite difference and the heat balance integral method. Ozer and Kutluay
[13] applied an analytical–numerical method, for solving the KdV equation and the
obtained results are compared with that of the heat balance integral method and
the corresponding analytical solution. Irk et al. [8] studied a second order spline
approximation technique and made comparisons with earlier methods. Ozdes and
Aksan [12] applied the method of lines for solving the KdV equation. A. Ozdes
and E.N. Aksan [11] used a quadratic B-spline Galerkin finite element method and
compared these techniques with the analytical solutions and other numerical solutions
that are obtained earlier using various numerical techniques. O. Ersoy and I. Dag [7]
applied the exponential cubic B-spline algorithm for solving the KdV equation. B.
Saka [15] used cosine expansion-based differential quadrature method for numerical
solution of the KdV equation. Dag and Y. Dereli [3] applied numerical solutions of
KdV equation using radial basis functions. A. Canıvar et al. [2] applied A Taylor-
galerkin finite element method for the KdV equation using cubic B-splines and also
G. Micula and M. Micula [10] used on the numerical approach of Korteweg-de Vries-
Burger equations by spline finite element and collocation methods.

The paper is organized as follows. In section 2, we convert the KdV equation to
system of nonlinear equations. In section 3, we introduced the description of method.
In section 4, we introduced the decoction of the liner combination between cubic
B-spline collocation method, dissection of initial state and stability. In section 5,
numerical results for problem and some related figures are given in order to show
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the efficiency as well as the accuracy of the proposed method and we introduced the
interaction of two and three solitary waves. Finally, conclusions are followed in section
6.

2. The kdv equation

Now we can convert the Eq. (1.1) to system of equations as the following process:
We take ux = v in the Eq. (1.1), so we get

ut + ε uux + µ vxx = 0,
ux = v,

(2.1)

where ε, µ are positive parameters and the subscripts x and t denote differentiation.
The boundary conditions of (2.1) are given by

u(a, t) = f1(a, t), u(b, t) = f2(b, t),
v(a, t) = g1(a, t), v(b, t) = g2(b, t), 0 ≤ t ≤ T. (2.2)

And initial conditions of (2.1) are given by

u(x, 0) = f(x),
v(x, 0) = g(x), a ≤ x ≤ b. (2.3)

3. Liner combination between cubic B-spline collocation method

To construct numerical solution, consider nodal points (xj , tn) defined in the region
[a, b]× [0, T ], where

a = x0 < x1 < ... < xN = b, h = xj+1 − xj =
b− a
N

, j = 0, 1, ..., N,

0 = t0 < t1 < ... < tn < ... < T, tn = n∆t, n = 0, 1, .... .

Through this section, linear combination between cubic B-splines (LCCBS) with dif-
ferent basis functions is used to solve (2.1). The approximate solution, UN (x, t),
V N (x, t) to the analytical solution u(x, t), v(x, t), in the form:

UN (x, t) =

N+1∑
j=−1

cj(t) Lj(x), V N (x, t) =

N+1∑
j=−1

δj(t) Lj(x), (3.1)

where cj(t) and δj(t) are time-dependent unknowns to be determined and Lj(x) is
(LCCBS) basis functions as

Lj(x) = γ CT Bj(x) + (1− γ) Bj(x) ,
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where CT Bj(x) the cubic trigonometric B-spline basis function at knots is given by

CT Bj(x) =
1

θ



ω3(xj−2), xj−2 ≤ x ≤ xj−1 ,
ω (xj−2) (ω (xj−2) φ(xj) + ω (xj−1) φ(xj+1) )
+ω 2(xj−1) φ(xj+2), xj−1 ≤ x ≤ xj
ω (xj−2) φ2(xj+1) + φ(xj+2) (ω (xj−1) φ(xj+1)
+ω (xj) φ(xj+2)), xj−1 ≤ x ≤ xj
φ3(xj+2), xj+1 ≤ x ≤ xj+2 ,
0 otherwise ,

(3.2)

where ω(xj) = sin
(
x−xj

2

)
, φ(xj) = sin

(
xj−x

2

)
, θ = sin

(
h
2

)
sin (h) sin

(
3h
2

)
and

Bj(x) is the exponential cubic B-spline basis functions at knots is are given by

Bj(x) =



b2

(
(xj−2 − x) − 1

p (sinh (p (xj−2 − x)))
)
, xj−2 ≤ x ≤ xj−1

a1 + b1 (xj − x) + c1 exp (p (xj − x))
+d1 exp (−p (xj − x)) , xj−1 ≤ x ≤ xj ,
a1 + b1 (x− xj) + c1 exp (p (x− xj))
+d1 exp (−p (x− xj)) , xj ≤ x ≤ xj+1 ,

b2

(
(x− xj+2) − 1

p (sinh (p (x− xj+2)))
)
, xj+1 ≤ x ≤ xj+2 ,

0 otherwise ,

(3.3)

where

a1 = p h c
p h c−s , b1 = p

2

[
c (c−1)+s2

(p h c−s)(1−c)

]
,

b2 = p
2(p h c−s) , d1 = 1

4

[
exp (−p h) (1−c)+s(exp (−p h)−1)

(p h c−s)(1−c)

]
,

d2 = 1
4

[
exp (p h) (1−c)+s(exp (p h)−1)

(p h c−s)(1−c)

]
,

s = sinh (p h) , c = cosh (p h) , h = b−a
N .

The value of γ plays an important role in the (LCCBS) basis function. If γ = 0,
the basis function is equal to cubic trigonometric B-spline basis function and if γ = 1,
the basis function is equal to exponential cubic B-spline basis functions. Hence, this
work just considers the value of 0 < γ < 1.

Due to local support properties of B-spline basis function, there are only three
nonzero basis functions; namely, Lj−1, Lj and Lj+1. Thus, the approximate values
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of UN (x), V N (x) and its two derivatives at the knots/nodes are determined in terms
of the time parameters cj , δj as follows:

(U 1 )j = (U1) (xj) = a1cj−1 + a2cj + a1cj+1,

(U′)j = (U′) (xj) = a3cj−1 − a3cj+1,

(U′′)j = (U′′) (xj) = a4cj−1 + a5cj + a4cj+1

(V)j = (V) (xj) = a1 δj−1 + a2 δj + a1 δj+1,

(V′)j = (V′) (xj) = a3 δj−1 − a3 δj+1,

(V′′)j = (V′′) (xj) = a4 δj−1 + a5 δj + a4 δj+1,

(3.4)

where

a1 = γ α1 + (1− γ)m1, a2 = γ α2 + (1− γ),
a3 = (1− γ)m2 − γ α3, a4 = γ α4 + (1− γ)m3,
a5 = γ α5 − 2 (1− γ)m3,

m1 = (s−p h)
2(p h c−s) , m2 = p (1−c)

2(p h c−s) ,m3 = p2s
2(p h c−s) ,

α1 = sin2
(
h
2

)
csc (h) csc

(
3h
2

)
, α2 = 2

1+2 cos (h) , α3 = 3
4 csc

(
3h
2

)
,

α4 =
3((1+3 cos (h)) csc2 (h

2 ))
16(2 cos (h

2 )+cos ( 3h
2 ))

, α5 = − 3 cot2(h
2 )

2+4 cos (h) ,

4. Solution of kdv equation

To apply the proposed method, we rewrite (2.1) as

∂u(x,t)
∂t + ε u (x, t)∂u(x,t)

∂x + µ∂
2v(x,t)
∂x2 = 0,

∂u (x,t)
∂x = v(x, t).

(4.1)

We take the approximations u(x, t) = Unj and v(x, t) = V nj , then from famous Cranck-
Nicolson scheme and forward finite difference approximation for the derivative t [5],
we get

Un+1
j −Un

j

k + ε

[
(UUx)n+1

j +(UUx)nj
2

]
+ µ

[
(V )xx

n+1
j +(V )xx

n
j

2

]
= 0,[

Ux
n+1
j +Ux

n
j

2

]
=

V n+1
j +V n

j

2 ,
(4.2)

where k = ∆t is the time step.
The nonlinear terms in (4.2) is linearized using the form given by Rubin and Graves

[14] as: we take linearization of the nonlinear term as follows:

(UUx)n+1
j = Unj Ux

n+1
j + Un+1

j Ux
n
j − Unj Uxnj . (4.3)

Using (3.4) and (4.3) in (4.2), we get a system of ordinary differential equations of
the form:

A1c
n+1
j−1 +A2c

n+1
j +A3c

n+1
j+1 +A4δ

n+1
j−1 +A5δ

n+1
j +A4δ

n+1
j+1 =

a1c
n
j−1 + a2c

n
j + a3c

n
j+1 −A4δ

n
j−1 −A5δ

n
j −A4δ

n
j+1,
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(4.4)

a3c
n+1
j−1 − a3c

n+1
j+1 − a1δ

n+1
j−1 − a2δ

n+1
j − a1δ

n+1
j+1 =

− a3c
n
j−1 + a3c

n
j+1 + a1δ

n
j−1 + a2δ

n
j + a1δ

n
j+1,

(4.5)

where

A1 = a1(1 + ε∆t
2 z2) + a3z1, A2 = a2(1 + ε∆t

2 z2),

A3 = a1(1 + ε∆t
2 z2)− a3z1, A4 = µ ∆t

2 a4, A5 = µ ∆t
2 a5.

The system thus obtained on simplifying (4.4) and (4.5) consists of (2N + 2) lin-
ear equations in the (2N + 2) unknowns (c0,......., cN )T ,(δ0,......., δN )T , which is the
tridiagonal system that can be solved by any algorithm.

4.1. Initial values. The initial vectors c0j , δ
0
j can be obtained from the initial con-

dition and boundary values of the derivatives of the initial condition as the following
expressions:

UN (x0, 0) = f1(0), for j = 0,
UN (xj , 0) = f(xj), for j = 1, 2, . . . , N − 1,
UN (xN , 0) = f2(0), for j = N,
V N (x0, 0) = g1(0), for j = 0,
V N (xj , 0) = g(xj), for j = 1, 2, . . . , N − 1,
V N (xN , 0) = g2(0), for j = N.

(4.6)

This yields a (2N + 2)× (2N + 2) system equations of the form


a2 2a1 0 0 · · · 0 0 0
a1 a2 a3 0 · · · 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · a1 a2 a3

0 0 0 0 · · · 0 2a1 a2




c00
c01
...
c0N−1

c0N

 =



f1(x0)
f(x0)
...
...
f(xN )
fN (x0)


,


a2 2a1 0 0 · · · 0 0 0
a1 a2 a3 0 · · · 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · a1 a2 a3

0 0 0 0 · · · 0 2a1 a2




δ0
0

δ0
1

...
δ0
N−1

δ0
N

 =



g1(x0)
g(x0)
...
...
g(xN )
gN (x0)


,

(4.7)

The solution of (4.7) can be solved by any algorithm.
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4.2. Stability analysis of the method. The stability analysis of nonlinear partial
differential equations is not easy task to undertake. Most researchers copy with the
problem by linearizing the partial differential equation. Our stability analysis will be
based on the Von-Neumann concept in which the growth factor of a typical Fourier
mode defined as

cnj = Aζn exp(ijφ),
δnj = Bζn exp(ijφ),

(4.8)

g =
ζn+1

ζn
,

where A and B are the harmonics amplitude, φ = k h , k is the mode number,
i =
√
−1 and g is the amplification factor of the schemes. We will be applied the

stability of the schemes by assuming the nonlinear term as a constants λ. System
(4.4) and (4.5) can be written as

a1c
n+1
j−1 + a2c

n+1
j + a1c

n+1
j+1 + λ k ε

2

(
a3c

n+1
j−1 − a3c

n+1
j+1

)
+

kµ
2

(
a4δ

n+1
j−1 + a5δ

n+1
j + a4δ

n+1
j+1

)
= a1c

n
j−1 + a2c

n
j + a1c

n
j+1−

λ k ε
2

(
a3c

n
j−1 − a3c

n
j+1

)
− kµ

2

(
a4δ

n
j−1 + a5δ

n
j + a4δ

n
j+1

)
,

(4.9)

a3c
n+1
j−1 − a3c

n+1
j+1 − a1δ

n+1
j−1 − a2δ

n+1
j − a1δ

n+1
j+1 =

− a3c
n
j−1 + a3c

n
j+1 + a1δ

n
j−1 + a2δ

n
j + a1δ

n
j+1.

(4.10)

Substituting (4.8) into the difference (4.9), we get

ζn+1
[
A (2a1 cos(φ) + a2) + Bkµ

2 (2a4 cos(φ) + a5)− iλ k εA a3 sin (φ)
]

= ζn
[
A (2a1 cos(φ) + a2)− Bkµ

2 (2a4 cos(φ) + a5) + iλ k εA a3 sin (φ)
]
,

(4.11)

ζn+1

ζn
=

[
A (2a1 cos(φ) + a2)− Bkµ

2 (2a4 cos(φ) + a5) + iλ k εA a3 sin (φ)
]

[
A (2a1 cos(φ) + a2) + Bkµ

2 (2a4 cos(φ) + a5)− iλ k εA a3 sin (φ)
] ,

(4.12)

g =
ζn+1

ζn
=
X1 + iY

X2 − iY
, (4.13)

where

X1 = A (2a1 cos(φ) + a2)− Bkµ
2 (2a4 cos(φ) + a5) ,

X2 = A (2a1 cos(φ) + a2) + Bkµ
2 (2a4 cos(φ) + a5) ,

Y = λ k εA a3 sin (φ).
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Substituting (4.8) into the difference (4.10), we get

ζn+1 [−B (2a1 cos(φ) + a2)− 2iA a3 sin (φ)]
= ζn [B (2a1 cos(φ) + a2) + 2iA a3 sin (φ)] ,

(4.14)

ζn+1

ζn
=

[B (2a1 cos(φ) + a2) + 2iA a3 sin (φ)]

[−B (2a1 cos(φ) + a2)− 2iA a3 sin (φ)]
, (4.15)

g =
ζn+1

ζn
=
X3 + iZ

X4 − iZ
, (4.16)

where

X3 = B (2a1 cos(φ) + a2) ,
X4 = −B (2a1 cos(φ) + a2) ,
Z = 2A a3 sin (φ).

From (4.13) and (4.16) we get |g| ≤ 1, hence the schemes are unconditionally stable.
It means that there is no restriction on the grid size, i.e. on h and ∆t, but we should
choose them in such a way that the accuracy of the scheme is not degraded.

5. Numerical testes and results of kdv equation

In this section, we present numerical example to test validity of our scheme for
solving KdV equation.

The norms L2-norm and L∞-norm are used to compare the numerical solution
with the analytical solution [6].

L2 =
∥∥uE − uN∥∥ =

√
h
∑N
i=0(uEj − uNj )2,

L∞ = max
j

∣∣uEj − uNj ∣∣ , j = 0, 1, · · · , N, (5.1)

where uE is the exact solution u and uN is the approximation solution UN , and the
quantities I1, I2 and I3 are shown to measure conservation for the schemes.

I1 =
∫∞
−∞ u(x, t) dx ∼= h

∑N
j=0 (U)

n
j ,

I2 =
∫∞
−∞

(
u(x, t)2

)
dx ∼= h

∑N
j=0

(
U2
)n
j
,

I3 =
∫∞
−∞

[(
u(x, t)3 − 3µ

ε ux (x, t)2
)]
dx ∼= h

∑N
j=0

[((
U3
)n
j
− 3µ

ε

(
U2
x

)n
j

)]
,

(5.2)

Now we consider this test problem.
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Test problem

We assume that the solution of the KdV equation is negligible outside the interval
[a, b] , together with all its x derivatives tend to zero at the boundaries. Therefore, in
our numerical study we replace Eq. (1.1) as shown in section 2 by

ut + ε uux + µ vxx = 0,
ux = v,

(5.3)

where ε, µ are positive parameters and the subscripts x and t denote differentiation.
The boundary conditions of (5.3) are given by

u(a, t) = 0, u(b, t) = 0,
v(a, t) = 0, v(b, t) = 0, 0 ≤ t ≤ T. (5.4)

And initial conditions of (5.3) are given by

u(x, 0) = f(x),
v(x, 0) = g(x), a ≤ x ≤ b. (5.5)

Then the exact solutions of system (5.5) is

u(x, t) = 3c sech2 (A x−B t+D ), (5.6)

where A = 1
2

√
3c
µ , B = ε c A.

This solution represents propagation of single soliton, having velocity εc and am-
plitude 3c.

To investigate the performance of the proposed schemes we consider solving the
following problem.

5.1. Single soliton. In previous section, we have provided modified exponential cu-
bic B-spline schemes for the KdV equation, and we can take the following initial
condition.

u(x, 0) = 3c sech2 (A x+D ), (5.7)

where A = 1
2

√
3c
µ .

The norms L2 and L∞ are used to compare the numerical results with the analytical
values and the quantities I1, I2 and I3 are shown to measure conservation for the
schemes.

Now, for comparison, we consider a test problem where, k = 0.005, D = −6, c =
0.3, ε = 1, µ = 4.84×10−4, p = 1.64×10−5, a = 0, b = 2. The invariant I1, I2 and I3
changed by less than 1.62×10−4, 4×10−6 and 1.471×10−4 respectively. Errors, also,
at time 2 are satisfactorily small L2-error =3× 10−3 and L∞-error = 9 × 10−3 in the
computer program for the scheme at γ = 0.9 . The invariant I1, I2 and I3 changed by
less than 9.8× 10−5, 1.3× 10−6 and 6.23× 10−5 respectively. Errors, also, at time 2
are satisfactorily small L2-error =1×10−3 and L∞-error = 5 ×10−3 in the computer
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program for the scheme at γ = 0.5. The invariant I1 changed by less than 5.8×10−5,I2
approach to zero and I3 changed by less than 2.05×10−5 in the computer program for
the scheme at γ = 0.001. Our results are recorded in Table 1. The motion of solitary
wave using our scheme is plotted at times t = 0, 1, 1.5, 2, 2.5, 3 in Figure 1. These
results illustrate that the scheme has a highest accuracy and best conservation at
γ = 0.001 than other scheme at γ = 0.9, γ = 0.5. So we use the scheme atγ = 0.001
to study the motion of single solitary waves and interaction between two and three
solitons.

Table 1. Invariants and errors for single solitary wave k =
0.005, D = −6, p = 1.64×10−5, ε = 1, c = 0.3, µ = 4.84×10−4, a =
0, b = 2.

γ T I1 I2 I3 L2-norm L∞-
norm

γ = 0.9 0.0
0.5
1.0
1.5
2.0

0.144598
0.144559
0.144721
0.144702
0.144661

0.0867593
0.0867604
0.0867633
0.0867623
0.0867614

0.0624667
0.0623538
0.0623423
0.0623254
0.0623196

0.000
0.001
0.002
0.003
0.003

0.000
0.005
0.007
0.009
0.009

γ = 0.5 0.0
0.5
1.0
1.5
2.0

0.144598
0.144567
0.144665
0.144656
0.144644

0.0867593
0.0867599
0.0867606
0.0867602
0.0867600

0.0624667
0.0624142
0.0624148
0.0624055
0.0624044

0.000
0.001
0.001
0.001
0.001

0.000
0.002
0.003
0.004
0.005

γ = 0.001 0.0
0.5
1.0
1.5
2.0
2.5
3.0

0.144598
0.144575
0.144617
0.144614
0.144627
0.144618
0.144633

0.0867593
0.0867593
0.0867593
0.0867593
0.0867593
0.0867593
0.0867593

0.0624667
0.0624669
0.0624786
0.0624758
0.0624785
0.0624872
0.0624826

0.0000
0.0004
0.0004
0.0004
0.0004
0.0004
0.0004

0.0000
0.0009
0.0009
0.0009
0.0009
0.0009
0.0009

In the next table we make comparison between the results of our scheme and the
results have been published in [15], [2], [3] and [7].

The results of our scheme are accurate than the results in [15], [3]b, [3]c and [3]d
and related with the results in [3]a, [3]e and [7] and not better than the results in [2].

5.2. Interaction of two solitary waves. The interaction of two solitary waves
having different amplitudes and traveling in the same direction is illustrated. We
consider KdV equation with initial conditions given by the linear sum of two well
separated solitary waves of various amplitudes

u(x, 0) = 3cj sech2 (A x+Dj ), (5.8)
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Figure 1. Single solitary wave with k = 0.005, D = −6, ε = 1, c =
0.3, µ = 4.84 × 10−4, γ = 0.001, 0 ≤ x ≤ 2, t = 0, 1, 1.5, 2, 2.5, 3
respectively.

Table 2. Invariants and errors for single solitary wave k =
0.005, D = −6, ε = 1, c = 0.3, p = 1.64 × 10−5, γ = 0.001, µ =
4.84× 10−4, 0 ≤ x ≤ 2, t = 3.

Method I1 I2 L2-norm L∞-norm
Analytical
Our scheme
[15]
[2]
[3]a (G)
[3]b (TPS)
[3]c (IQ)
[3]d (IMQ)
[3]e (MQ)
[7]

0.144598
0.144633
0.014460
0.144597
0.144601
0.144261
0.144598
0.144623
0.144606
0.144597

0.0867593
0.0867593
0.08675
0.086761
0.086760
0.086762
0.086759
0.086765
0.086759
0.0867593

0.0000
0.0004
-
-
0.00004
0.002
0.001
0.002
0.00006
-

0.00000
0.0009
0.001
0.00004
0.0001
0.006
0.002
0.005
0.0001
0.0007

where A = 1
2

√
3cj
µ , j = 1, 2, 3, cj and Dj are arbitrary constants. In our com-

putational work. Now, we choose c1 = 0.9, c2 = 0.3, D1 = −6, D2 = −8, µ =
4.84× 10−4, ε = 1, h = 0.01, k = 0.005 with interval [0, 2]. In Figure 3, the interac-
tions of these solitary waves are plotted at different time levels.

5.3. Interaction of three solitary waves. The interaction of three solitary waves
having different amplitudes and traveling in the same direction is illustrated. We
consider the KdV equation with initial conditions given by the linear sum of three
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Figure 2. Interaction two solitary waves with c1 = 0.9, c2 =
0.3, D1 = −6, D2 = −8, µ = 4.84 × 10−4, ε = 1, h = 0.01,
k = 0.005, 0 ≤ x ≤ 2 at time t = 0, 0.5, 0.75, 1 respectively.

well separated solitary waves of various amplitudes

u(x, 0) = 3cj sech2 (A x+Dj ), (5.9)

where A = 1
2

√
3cj
µ , j = 1, 2, 3, −cj and Dj are arbitrary constants. In our com-

putational work. Now, we choose c1 = 0.9, c2 = 0.6, c3 = 0.3, D1 = −8, D2 =
−10, D3 = −14, ε = 1, h = 0.01, µ = 4.84× 10−4, k = 0.005 with interval [0, 2]. In
Figure 4 the interactions of these solitary waves are plotted at different time levels.

6. Conclusion

In this paper, we applied the linear combination between exponential cubic B-spline
method and trigonometric cubic B-spline to develop a numerical method for solving
KdV equation and shown that the scheme is unconditionally stable. We tested our
schemes through a single solitary wave in which the analytic solution is known, then
extend it to study the interaction of solitons where no analytic solution is known
during the interaction and its accuracy was shown by calculating error norms L2 and
L∞.
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Figure 3. Interaction three solitary waves with c1 = 0.9, c2 =
0.6, c3 = 0.3, D1 = −8, D2 = −10, D3 = −14, ε = 1, h =
0.01, µ = 4.84 × 10−4, k = 0.005, 0 ≤ x ≤ 2 at times t =
0, 1, 1.25, 1.5 respectively.
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