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Abstract In this paper, we propose a relatively new semi-analytical technique to approximate
the solution of nonlinear multi-order fractional differential equations (FDEs). We
present some results concerning to the uniqueness of solution of nonlinear multi-

order FDEs and discuss the existence of solution for nonlinear multi-order FDEs in
reproducing kernel Hilbert space (RKHS). We further give an error analysis for the
proposed technique in different reproducing kernel Hilbert spaces and present some

useful results. The accuracy of the proposed technique is examined by comparing
with the exact solution of some test examples.
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1. Introduction

Fractional differential equations have gained considerable importance due to their
frequent applications in various fields of science and engineering [1-2], integral equa-
tions [3], viscoelastic damping materials [4-5], bioengineering [6-8], solid mechanics
[9], chaos [10-11], control theory [12] and finance [13-14]. It has been found that frac-
tional derivatives provide an excellent instrument for the description of memory and
hereditary properties of different substances. Due to these features, the fractional-
order models become more practical and realistic than the classical integrad-order
models, in which such effects are not taken into account. Finding exact solutions
in closed forms for most differential equations of fractional order is a difficult task
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[15-16]. As a result, a number of methods have been proposed and applied success-
fully to approximate fractional differential equations, such as Adomian decomposition
method [17], variational iteration method [18], homotopy analysis method [19] and
collocation method [20]. Especially, Momani and Odibat [21-22], have applied He’s
variational iteration method to fractional differential equations. Meanwhile, vari-
ous fractional order differential equation have been solved very recently including
fractional advection-dispersion equations [23-24], reaction-diffusion system with frac-
tional derivatives [25], fractional partial differential equations fluid mechanics [26] and
fractional-order multi-point boundary value problem [27-29]. Fractional differential
equations with multi-orders have been used to model different types [30-33].

In the present work, we are concerned with the numerical solution of the following
multi-order fractional differential equations in a reproducing kernel space method
(RKSM) :

Dαn
∗τ ϕ(τ) = f(τ, ϕ(τ), Dα1

∗τ ϕ(τ), D
α2
∗τ ϕ(τ), · · · , D

αn−1
∗τ ϕ(τ)), (1.1)

D(j)ϕ(0) = 0, j = 0, 1, 2, · · · , n− 1 n ∈ N ,

where 0 ≤ α1 < α2 < · · · < αn−1 < αn ≤ n and f is a given function on
D := [0, T ] × Rn and Dαi

∗τ stands for the Caputo fractional derivative of order αi.
Recently, the (RKSM) [34-35], has been used for obtaining approximate solutions
of differential and integral equations [36-45]. However, due to the multi-point initial
value conditions in (1), especially for fractional differential equations, it is difficult to
find the corresponding reproducing kernel space by applying traditional RKSM. The
aim of this work is to extend the RKSM to derive the numerical solutions of (1). One
important improvement is that we successfully construct a novel reproducing kernel
space to overcome difficulties with the multi order FDEs. By using the new repro-
ducing kernel functions, we present an efficient numerical algorithm to solve (1). We
especially emphasis on the uniformly convergence of the approximate solution and
error estimation of our algorithm are studied.
The rest of paper is organized as follows. In Section 2, we present some important
definitions and preparations used in this paper. In Section 3, we construct and de-
velop algorithms for solving nonlinear fractional differential equation. In Section 4
the proposed methods are applied to several examples. Also a conclusion is given in
Section 5.

2. Fractional Calculus

We now give some basic definitions and properties of the fractional calculus theory,
which are used in the following sections. For more details see [15-16]. For the finite
derivative in [0, T ], we define the following fractional integral and derivatives.

Definition 2.1. (see [15-16]). A real function ϕ(τ), τ > 0, is said to be in the space
Cα, α ∈ R, if there exists a real number p (> α), such that ϕ(τ) = τpϕ1(τ), where
ϕ1(τ) ∈ C[0,∞), and it is said to be in the space Cm

α ,m ∈ N
∪
{0}, if and only if

ϕ(m)(τ) ∈ Cα.
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Definition 2.2. (see [15-16]). The (left sided) Riemann-Liouville fractional integral
of order α > 0 of a function ϕ(τ) ∈ Cα, α ≥ −1, is defined as

Iατ ϕ(τ) =


1

Γ(α)

∫ τ

0
ϕ(t)

(τ−t)1−α dt, α > 0,

ϕ(τ), α = 1,

(2.1)

where Γ(α) is the well-known Gamma function.

Definition 2.3. (see [15-16]). The (left sided) Caputo fractional derivative of ϕ(τ), ϕ(τ) ∈
Cm

−1, m ∈ N
∪
{0}, is defined as

Dα∗τϕ(τ) =

 Im−α
τ Dmϕ(τ), m− 1 < α < m,

Dmϕ(τ), α = m.
(2.2)

Theorem 2.4. (see [15-16]). Assuming that the continues functions ϕ(τ) and φ(τ)
have a fractional derivatives of order α, then

Dα∗τ (γϕ(τ) + ηφ(τ)) = γDα∗τϕ(τ) + ηDα∗τφ(τ), γ, η ∈ C, (2.3)

Dα∗τ (ϕ(τ)φ(τ)) ̸= φ(τ)Dα∗τϕ(τ) + ϕ(τ)Dα∗τφ(τ). (2.4)

Theorem 2.5. (see [15-16]). Assuming that the continues functions ϕ(τ) and φ(τ)
have a fractional derivatives of order α, then the following properties hold,

Iατ D
α
∗τϕ(τ) = ϕ(τ)−

m−1∑
k=0

ϕ(k)(0+)
τk

k!
, m− 1 < α ≤ m, m ∈ N , (2.5)

Dα∗τI
α
τ ϕ(τ) =

 ϕ(τ), m− 1 < α ≤ m, m ∈ N ,

Iατ D
α
∗τϕ(τ) + ϕ(0), 0 < α < 1.

(2.6)

3. The Reproducing Kernel Hilbert Space

We give some basic definitions and properties of the reproducing kernel and repro-
ducing kernel Hilbert space, and then we introduce some reproducing kernel Hilbert
spaces which are used in the proceeding sections.

3.1. Basic Definitions and Theorems.

Definition 3.1. (see [34-35]). Let H be a real Hilbert space of functions on a set U .
Denote by < ϕ,φ >H the inner product and let ∥ϕ∥ =

√
< ϕ, ϕ >H be the norm in

H, for ϕ, φ ∈ H. The real valued function R : U × U −→ R is called a reproducing
kernel of H if the followings are satisfied
(i) For every τ , Rτ (s) = R(τ, s) as a function of s belongs to U .
(ii) The reproducing property: ϕ(τ) =< ϕ(.), Rτ (.) >H for all ϕ ∈ H and all τ ∈ U.

Definition 3.2. (see [34-35]). A Hilbert space H of functions on a set U is called a
reproducing kernel Hilbert space if there exists a reproducing kernel R of H.
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Definition 3.3. (see [34-35]). If a Hilbert space H of functions on a set U possesses
a reproducing kernel, then the reproducing kernel R is uniquely determined by the
Hilbert space H.

3.2. The Hilbert Space Hm([0, T ]) and Reproducing Kernel. We recall the
following definitions from [34-35].

Definition 3.4. The inner product space Hm([0, T ]) for function ϕ is defined as

Hm([0, T ]) = {ϕ(τ)|ϕ, ϕ′
, ..., ϕm−1are absolutely continuous real value functions, ϕ(m) ∈

L2([0, T ]), D(i)ϕ(0) = 0, i = 0, 1, ...,m− 1, τ ∈ [0, T ]}.
The inner product in Hm([0, T ]) is of he form

⟨ϕ(τ), φ(τ)⟩Hm =
∑

0≤i<m

D(i)ϕ(0)D(i)φ(0) +

∫ T

0

D(m)ϕ(s)D(m)φ(s)ds, (3.1)

and norm in the space Hm([0, T ]) is defined as

∥ϕ∥Hm =
√
⟨ϕ, ϕ⟩Hm , (3.2)

where ϕ, φ ∈ Hm([0, T ]).
It can be proved that the inner product space Hm([0, T ]) is a reproducing kernel
Hilbert space [].

Theorem 3.5. The inner product space Hm([0, T ]) is a reproducing kernel Hilbert
space. For each τ ∈ [0, T ], there exists a unique element Rτ (s) ∈ Hm([0, T ]), for any
ϕ(s) ∈ Hm([0, T ]) and each fixed τ ∈ [0, T ], s ∈ [0, T ], such that ⟨ϕ(s), Rτ (s)⟩Hm =
ϕ(τ). The reproducing kernel Rτ (s) can be represented by

Rτ (s) =

{ ∑2m+1
i=0 ci(τ)s

i, τ < s,∑2m+1
i=0 di(τ)s

i, s ≤ τ,
(3.3)

where, the coefficients ci(τ), di(τ), i = 0, 1, ..., 2m+ 1, are determined by

D(m)Rτ (0)−D(m+1)Rτ (0) = 0,
D(2m−i+1)Rτ (1) = 0, i = 0, 1, 2, ...,m,

lims→τ+
DiRτ (s)

Dsi = lims→τ−
DiRτ (s)

Dsi , i = 1, 2, ..., 2m,

(−1)m+1(lims→τ+
D2m+1Rτ (s)

Ds2m+1 − lims→τ−
D2m+1Rτ (s)

Ds2m+1 ) = 1,
D(i)ϕ(0) = 0, i = 0, 1, 2, ...,m− 1.

(3.4)

Definition 3.6. Suppose that B1 and B2 are two Banach space such that B1 ⊆ B2.
Then, we say the space B1 is continuously embedded in B2 and write B1 ↪→ B2, if

∥ϕ∥B2 ≤ c∥ϕ∥B1 , ∀ϕ ∈ B1. (3.5)

Theorem 3.7. Let l1 and l2 be non-negative integers, l1 > l2 and suppose that U ⊆ R.
Then the following statement holds

H l1(U) ↪→ H l2(U). (3.6)

We now derive the following theorems concering to the norm ∥ϕ∥.
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Theorem 3.8. For any ϕ ∈ Hm we have the following statement

∥ϕ∥∞ ≤ const ∥ϕ∥Hm , (3.7)

for some const independent of ϕ.
Proof. We know

ϕ(τ) = D(m−1)ϕ(0)D(m−1)Rτ (0) +

∫ 1

0

D(m)ϕ(s)D(m)Rτ (s)ds. (3.8)

From (3.8), for some const1 we obtain

|ϕ(τ)| ≤ |D(m−1)ϕ(0)||D(m−1)Rτ (0)|+
∫ 1

0

|D(m)ϕ(s)||D(m)Rτ (s)|ds

≤ |D(m−1)ϕ(0)||D(m−1)Rτ (0)|+ (

∫ 1

0

|D(m)ϕ(s)|2ds) 1
2 (

∫ 1

0

|D(m)Rτ (s)|2ds)
1
2

≤ const1 (|D(m−1)ϕ(0)|+ (

∫ 1

0

|D(m)ϕ(s)|2ds) 1
2 ), (3.9)

and therefore

∥ϕ(τ)∥2∞

≤ const2 (|D(m−1)ϕ(0)|2 +
∫ 1

0
|D(m)ϕ(s)|2ds+ 2|D(m−1)ϕ(0)|(

∫ 1

0
|D(m)ϕ(s)|2ds) 1

2 )

≤ 2const2 (|D(m−1)ϕ(0)|2 +
∫ 1

0
|D(m)ϕ(s)|2ds)

= const (|D(m−1)ϕ(0)|2 +
∫ 1

0
|D(m)ϕ(s)|2ds).

(3.10)

This completes the proof.

4. Efficient Results for Multi-Order Fractional Differential
Equations

A multi-order fractional differential equation can be presented in the following
form [30-33]

Dαn
∗τ ϕ(τ) = f(τ, ϕ(τ), Dα1

∗τ ϕ(τ), D
α2
∗τ ϕ(τ), · · · , D

αn−1
∗τ ϕ(τ)), (4.1)

D(j)ϕ(0) = 0, j = 0, 1, 2, · · · , n− 1 n ∈ N ,

where 0 ≤ α1 < α2 < · · · < αn−1 < αn ≤ n and f is a given function on
D := [0, T ] × Rn and Dαi

∗τ indicates the Caputo fractional derivative of order αi.
In this section, we study the uniqueness of solutions for the the problem (4.1). Be-
fore proving the uniqueness, we present the following auxiliary lemmas which will be
needed in the sequel.

Lemma 4.1. Suppose that function f : [0, T ] × Rn → R is continuous. Then
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ϕ ∈ B is a solution of (4.1) if and only if ϕ ∈ B is a solution of following equation.

ϕ(τ) =
1

Γ(αn)

∫ τ

0

f(t, ϕ(t), Dα1
∗t ϕ(t), D

α2
∗t ϕ(t), · · · , D

αn−1

∗t ϕ(t))

(τ − t)1−αn
dt. (4.2)

Proof. Suppose, ϕ satisfies the initial value problem (4.1), then applying Iαn
τ to the

both sides of (4.1) and using Theorem 3.8, it will be obvious that (4.1) is equivalent
to (4.2).

Lemma 4.2. (see [33]) For any ϕ : (0,∞) → R we have the following statement

Dα∗τϕ(τ) ∈ C([0, T ]). (4.3)

Theorem 4.1. Suppose that the following conditions are satisfied.
(i) ∀τ ∈ [0, T ], f ∈ C([0, T ]× Rn),
(ii) there exists a constant κ > 0 such that

|f(τ, u1, u2, ..., un)− f(τ, v1, v2, ..., vn)| ≤ κ|u1 − v1|+ ...+ κ|un − vn|,

for all τ ∈ [0, T ], (u1, ..., un),(v1, ..., vn) ∈ Rn,. Then (4.2) has a unique solution.
Proof. Let C([0, T ]) be the space of all continuous functions defined on [0, T ]. In ad-
dition, we define the Banch space B = {ϕ(τ)|ϕ(τ) ∈ C([0, T ]), Dαi

∗τϕ(τ) ∈ C([0, T ]), i =
1, 2, ..., n− 1} with the norm

∥ϕ∥θ = max
τ∈[0,T ]

e−θκτ |ϕ(τ)|+
n−1∑
i=1

max
τ∈[0,1]

e−θκτ |Dαi
∗τϕ(τ)|. (4.4)

Let further T : B → B be an operator defined as

(Tϕ)(τ) =
1

Γ(αn)

∫ τ

0

f(t, ϕ(t), Dα1
∗t ϕ(t), · · · , D

αn−1

∗t ϕ(t))

(τ − t)1−αn
dt. (4.5)

For any ϕ1, ϕ2 ∈ B, we have

|(Tϕ2)(τ)− (Tϕ1)(τ)|

≤ 1

Γ(αn)

∫ τ

0

|f(t, ϕ2(t), D
α1
∗t ϕ2(t), · · · , D

αn−1
∗t ϕ2(t))− f(t, ϕ1(t), D

α1
∗t ϕ1(t), · · · , D

αn−1
∗t ϕ1(t))|

(τ − t)1−αn
dt

=
1

Γ(αn)

∫ τ

0

κ|ϕ2 − ϕ1|+
∑n

i=2 κ|D
αi
∗t ϕ2 − Dα∗tϕ1|

(τ − t)1−αn
dt

=
1

Γ(αn)

∫ τ

0

κ1e
+θκt(e−θκt|ϕ2 − ϕ1|) +

∑n
i=2 κe

+θκt(e−θκt|Dαi
∗t ϕ2 − D

αi
∗t ϕ1|)

(τ − t)1−αn
dt

≤ κ

Γ(αn)

∫ τ

0

e+θκt

(τ − t)1−αn
dt ∥ϕ2 − ϕ1∥θ. (4.6)
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|Dαi
∗τ (Tϕ2)(τ)− D

αi
∗τ (Tϕ1)(τ)|

≤ 1

Γ(αn − αi)

∫ τ

0

|f(t, ϕ2(t), D
α1
∗t ϕ2(t), · · · , D

αn−1
∗t ϕ2(t))− f(t, ϕ1(t), D

α1
∗t ϕ1(t), · · · , D

αn−1
∗t ϕ1(t))|

(τ − t)1−αn+αi
dt

=
1

Γ(αn − αi)

∫ τ

0

κ|ϕ2 − ϕ1|+
∑n

i=2 κ|D
αi
∗t ϕ2 − D

αi
∗t ϕ1|

(τ − t)1−αn+αi
dt

=
1

Γ(αn − αi)

∫ τ

0

κe+θκt(e−θκt|ϕ2 − ϕ1|) +
∑n

i=2 κe
+θκt(e−θκt|Dαi

∗t ϕ2 − D
αi
∗t ϕ1|)

(τ − t)1−αn+αi
dt

≤ κ

Γ(αn − αi)

∫ τ

0

e+θκt

(τ − t)1−αn+αi
dt ∥ϕ2 − ϕ1∥θ. (4.7)

Further, from (4.6) and (4.7), we have

e−θκτ |(Tϕ2)(τ)− (Tϕ1)(τ)|

≤ κe−θκτ

Γ(αn)

∫ τ

0

e+θκt

(τ − t)1−αn
dt ∥ϕ2 − ϕ1∥θ.

e−θκτ |Dαi
∗τ (Tϕ2)(τ)− Dαi

∗τ (Tϕ1)(τ)|

≤ κe−θκτ

Γ(αn − αi)

∫ τ

0

e+θκt

(τ − t)1−αn+αi
dt ∥ϕ2 − ϕ1∥θ. (4.8)

Hence

∥(Tϕ2)(τ)− (Tϕ1)(τ)|∥θ

≤ κe−θκτ∥ϕ2 − ϕ1∥θ[
1

Γ(αn)

∫ τ

0

e+θκt

(τ − t)1−αn
dt

+
n−1∑
i=1

1

Γ(αn − αi)

∫ τ

0

e+θκt

(τ − t)1−αn+αi
dt].

So we get

∥(Tϕ2)(τ)− (Tϕ1)(τ)|∥θ

≤ sup
τ∈[0,T ]

{κe−θκτ [
1

Γ(αn)

∫ τ

0

e+θκt

(τ − t)1−αn
dt+

n−1∑
i=1

1

Γ(αn − αi)

∫ τ

0

e+θκt

(τ − t)1−αn+αi
dt}∥ϕ2 − ϕ1∥θ].

Now, we show that

lim
θ→∞

sup
τ∈[0,T ]

{κe−θκτ [
1

Γ(αn)

∫ τ

0

e+θκt

(τ − t)1−αn
dt+

n−1∑
i=1

1

Γ(αn − αi)

∫ τ

0

e+θκt

(τ − t)1−αn+αi
dt}] = 0.



CMDE Vol. 4, No. 3, 2016, pp. 170-190 177

If θκ(τ − t) = w, we have

0 ≤ κe−θκτ [
1

Γ(αn)

∫ τ

0

e+θκt

(τ − t)1−αn
dt+

n−1∑
i=1

1

Γ(αn − αi)

∫ τ

0

e+θκt

(τ − t)1−αn+αi
dt]

≤ κe−θκτ [
1

Γ(αn)

∫ θκτ

0

e+θκτ−wwαn−1

(θκ)αn−1

dw

θκ
+

n−1∑
i=1

1

Γ(αn − αi)

∫ θκτ

0

e+θκτ−wwαn−αi−1

(θκ)αn−αi−1

dw

θκ
]

= κe−θκτ [
e+θκτ

(θκ)αnΓ(αn)

∫ θκτ

0

e−wwαn−1dw +

n−1∑
i=1

e+θκτ

(θκ)αn−αiΓ(αn − αi)

∫ θκτ

0

e−wwαn−αi−1dw]

≤ κe−θκτ [
e+θκτ

(θκ)αn
+

n−1∑
i=1

e+θκτ

(θκ)αn−αi
]

= κ[
1

(θκ)αn
+

n−1∑
i=1

1

(θκ)αn−αi
] (4.9)

and therefore we see

lim
θ→∞

sup
τ∈[0,1]

{κe−θκτ [
1

Γ(αn)

∫ τ

0

e+θκt

(τ − t)1−αn
dt+

n−1∑
i=1

1

Γ(αn − αi)

∫ τ

0

e+θκt

(τ − t)1−αn+αi
dt}] = 0.

By the Banach contraction principle, T has a unique fixed point which is a solution
of (4.2) and the proof is completed now.

5. The Proposed Method

Consider, the model problem (4.2) as follows

ϕ(τ)− 1

Γ(αn)

∫ τ

0

f(t, ϕ(t), Dα1
∗t ϕ(t), D

α2
∗t ϕ(t), · · · , D

αn−1

∗t ϕ(t))

(τ − t)1−αn
dt

= ( Lϕ)(τ)− (Nϕ)(τ)− g(τ) = 0 (5.1)

where g(τ) is an analytic function, ϕ(τ) ∈ Hr[0, 1], (r ≥ n+1) is an unknown function
which should be determined, N and  L : Hr[0, 1] → H1[0, 1] are nonlinear and linear
operators, respectively. Suppose further that there exists a nonnegative constant M
such that ∥ Lϕ∥H1 ≤ M∥ϕ∥Hr , for all ϕ ∈ Hr, then  L is a bounded linear operator.
Then, we consider (5.1) as following

( Lϕ)(τ) = g(τ) + (Nϕ)(τ). (5.2)

We set ρi(τ) = Rτ (s)|s=τi and qi(τ) = ( L∗ρi)(τ), i = 1, 2, . . . , where Rτ (s) is the
reproducing kernel of H1([0, 1]) and  L∗ is the adjoint operator of linear operator  L.

Theorem 5.1. (see [35]) Let {τi}∞i=1 be a countable dense subset in the domain [0, 1],
then {qi(τ)}∞i=1 is a complete system of Hr([0, 1]) and qi(x) =  LsRτ (s)|s=τi , where
the subscript s in the operator  L indicates that the operator  L applies to the function
of s.
Now, the orthonormal system {q̃i(x)}∞i=1 of Hr([0, 1]) can be derived by Gram-Schmidt



178 R. KHOSHSIAR GHAZIANI, M. FARDI, AND M. GHASEMI

orthogonalization process applied to {qi(x)}∞i=1, namely

qi(τ) =
qi(τ)−

∑i−1
l=1 rliql(τ)

rii
, (5.3)

where the coefficient rli in the numerators is

rli = ⟨ql(τ), qi(τ)⟩Hr , l ̸= i (5.4)

and the coefficients rkk in the denominators are chosen for normalization

rii = ⟨qi(τ)−
i−1∑
l=1

rliql(τ)⟩Hr . (5.5)

We note that if

qi(τ) =

i∑
l=1

cliql(τ), (5.6)

then clearly, cli = − rli
rii

cii =
1
rii

.

Theorem 5.2. (see [35]) Let {τi}∞i=1 be dense in [0, 1], and the solution of (5.1) be
unique, then the exact solution of (5.1) will be

ϕ(τ) =

∞∑
i=1

i∑
k=1

cik[g(τk) + (Nϕ)(τk)]q̃i(τ). (5.7)

Now, we give the approximation solution to ϕ(τ) in the reproducing kernel space
Hr([0, 1]). For simplicity of numerical computations, we truncate the series (33),
to derive

ϕN (τ) =
N∑
i=1

i∑
k=1

cik[ξk + g(τk)]qi(τ), (5.8)

which is the N -term approximation to ϕ(τ), where ξk = (Nϕ)(τk).
To evaluate ξk in (5.8), we define the function

Q(ξ1, ξ2, ..., ξN ) =
N∑

k=1

[ξk − (NϕN )(τk)]
2. (5.9)

The objective is to minimize (5.9). Therefore, we can get ΦN (τ) by finding ξk, k =
1, 2, ..., N to minimum Q(ξ1, ξ2, ..., ξN ).
The steps of our procedure for the approximate solution of problem (4.1) can be sum-
marized as follows:

Input: The suitable initial values ξ
{0}
k , k = 1, 2, ..., N .

Output: The values of ξ
{p}
k , k = 1, 2, ..., N to minimize Q(ξ1, ξ2, ..., ξN ).

(i) Calculate the values of Q(ξ
{0}
1 , ξ

{0}
2 , ..., ξ

{0}
N ) and

ϕ
{0}
N (τ) =

N∑
i=1

i∑
k=1

cik[ξ
{0}
k + g(τk)]qi(τ) (5.10)
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by using (5.9) and (5.7), respectively.

(ii) For the prescribed tolerance ϵ, if Q(ξ
{0}
1 , ξ

{0}
2 , ..., ξ

{0}
N ) < ϵ, then stop the compu-

tations, if not, then calculate the value of ξ
{1}
k , k = 1, 2, ..., N as follows

ξ
{1}
k = (Nϕ

{0}
N )(τk) k = 1, 2, ..., N. (5.11)

(iii) Calculate the value of Q(ξ
{1}
1 , ξ

{1}
2 , ..., ξ

{1}
N ) by using (5.9).

(iv) If Q(ξ
{1}
1 , ξ

{1}
2 , ..., ξ

{1}
N ) < Q(ξ

{0}
1 , ξ

{0}
2 , ..., ξ

{0}
N ), then ξ

{1}
k → ξ

{0}
k , k = 1, 2, ..., N

(replace ξ
{0}
k by ξ

{1}
k ) and calculate

ϕ
{1}
N (τ) =

N∑
i=1

i∑
k=1

cik[ξ
{1}
k + g(τk)]qi(τ) (5.12)

and return to step (ii). If not, then give up ξ
{1}
k , k = 1, 2, ..., N , pick a new ξ

{0}
k , k =

1, 2, ..., N , and return to step (i). Therefore we obtain the approximate values of

ξ
{p}
k , k = 1, 2, ..., N such that Q(ξ

{p}
1 , ξ

{p}
2 , ..., ξ

{p}
N ) < ϵ. Consequently, the solution

of (4.1) becomes

ϕ
{p}
N (τ) =

N∑
i=1

i∑
k=1

cik[ξ
{p}
k + g(τk)]qi(τ). (5.13)

6. Error Analysis

Now, we consider the error estimation for the RKHSM applied to the the following
functional problem

Dαn
∗τ ϕ(τ) = f(τ, ϕ(τ), Dα1

∗τ ϕ(τ), D
α2
∗τ ϕ(τ), · · · , D

αn−1
∗τ ϕ(τ)), (6.1)

D(j)ϕ(0) = 0, j = 0, 1, 2, · · · , n− 1 n ∈ N , 0 ≤ α1 < · · · < αn ≤ n

In the following we will obtain the error bounds for the approximate solution of (6.1)
in the reproducing kernel Hilbert spaces Hn+3([0, 1]), Hn+4([0, 1]) and Hn+5([0, 1]).

6.1. Error analysis in Hn+3([0, 1]).

Theorem 6.1. Let ∆N = {0 = τ1 < τ2 < ... < τN = 1} be a partition of the
interval [0, 1], and δ = δ(∆N ) = max1≤i≤N−1 ∆τi. Also suppose that ϕN (τ) be the
approximate solution of the problem in the Hilbert space Hn+3([0, 1]) and f is a given
continuous function. The following relation hold,

∥ϕ(τ)− ϕN (τ)∥∞ ≤ const δ, (6.2)

where const is a real constant.
Proof First, we define the following residual function for any ϕN (τ) as an approxi-
mate solution of the problem (6.1)

ΞN (τ) = Dαn
∗τ ϕN (τ)− f(τ, ϕ(τ), Dα1

∗τ ϕN (τ), · · · , Dαn−1
∗τ ϕN (τ)) ̸= 0. (6.3)
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So from the reproducing kernel Hilbert space method we have

ΞN (τm) = 0, 1 ≤ m ≤ N. (6.4)

The piecewise linear interpolant p∆N
(ΞN ; τ) of ΞN (τ) is defined by the following two

requirements
(a) For each i = 1, 2, ..., N, p∆N

(ΞN ; τ)|[τi,τi+1] is linear.
(b) For each i = 1, 2, ..., N, p∆N (ΞN ; τi) = ΞN (τi).
For a function ΞN (τ) ∈ H4([τi, τi+1]), let p(ΞN ; τ) be its linear interpolant, since
ΞN (τi) = ΞN (τi+1) = 0, then we have

p(ΞN ; τ) = ΞN (τi)
(τi+1 − τ)

τi+1 − τi
+ ΞN (τi+1)

(τi − τ)

τi+1 − τi
= 0, τi ≤ τ ≤ τi+1. (6.5)

By the Taylor’s theorem

ΞN (τ) = (τ − τi)
d

dτ
ΞN (τ) +

∫ τi

τ

(t− τi)
d2

dt2
ΞN (t)dt, (6.6)

ΞN (τ) = (τ − τi+1)
d

dτ
ΞN (τ) +

∫ τi+1

τ

(t− τi+1)
d2

dt2
ΞN (t)dt. (6.7)

Thus, from (6.6) and (6.7) we have

ΞN (τ) =
τ − τi

τi+1 − τi

∫ τi+1

τ

(t− τi+1)
d2

dt2
ΞN (t)dt

+
τi+1 − τ

τi+1 − τi

∫ τi

τ

(t− τi)
d2

dt2
ΞN (t)dt, (6.8)

and therefore for some const1∫ τi+1

τi

|ΞN (τ)|2dτ ≤ const1

∫ τi+1

τi

| d
2

dτ2
ΞN (τ)|2dτ. (6.9)

Using (6.9) we have∫ τi+1

τi

|ΞN (τ)|2dτ = ∆τi

∫ 1

0

|ΞN (τi + t∆τi)|2dt

≤ const1 ∆τi

∫ 1

0

| d
2

dt2
ΞN (τi + t∆τi)|2dt

= const1 ∆4τi

∫ τi+1

τi

| d
2

dτ2
ΞN (τ)|2dτ. (6.10)

Therefore,

∥ΞN (τ)∥2L2 =
N−1∑
i=1

∫ τi+1

τi

|ΞN (τ)|2dt ≤ const1 δ4∥ d2

dτ2
ΞN (τ)∥2L2 , (6.11)
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Differentiating the equation (6.8) with respect to τ , we have the following equation

Ξ
′

N (τ) =
1

τi+1 − τi

∫ τi+1

τ

(t− τi+1)
d2

dt2
ΞN (t)dt

− 1

τi+1 − τi

∫ τi

τ

(t− τi)
d2

dt2
Ξ̂N (t)dt, (6.12)

and therefore for some const2∫ τi+1

τi

|Ξ
′

N (τ)|2dτ ≤ const2

∫ τi+1

τi

| d
2

dτ2
ΞN (τ)|2dτ, (6.13)

Using (6.13), we have∫ τi+1

τi

|Ξ
′

N (τ)|2dτ =
1

∆τi

∫ 1

0

| d
dt

ΞN (τi + t∆τi)|2dt

≤ const2
∆τi

∫ 1

0

| d
2

dt2
ΞN (τi + t∆τi)|2dt

= const2 ∆2τi

∫ τi+1

τi

| d
2

dτ2
ΞN (τ)|2dτ. (6.14)

Then, a similar argument shows

∥Ξ
′

N (τ)∥2L2 =

N−1∑
i=1

∫ τi+1

τi

|Ξ
′

N (τ)|2dτ ≤ const2 δ2∥ d2

dτ2
ΞN (τ)∥2L2 . (6.15)

Furthermore, by using the theory of interpolation, it is straightforward to show that

Ξ2
N (a) ≤ const2 δ4. (6.16)

Then

∥ΞN (τ)∥H1 ≤ const3δ, (6.17)

where const3 is a constant.
By using Theorem 5.2, it is easy to show that

∥ϕ(τ)− ϕN (τ)∥H4 = ∥ L∗∥∥ΞN (τ)∥H1 ≤ const4 δ, (6.18)

Then using Theorem 3.8, we can obtain the following error bound

∥ϕ(τ)− ϕN (τ)∥∞ ≤ const5 ∥ϕ(τ)− ϕN (τ)∥H4 ≤ const δ. (6.19)

6.2. Error analysis in Hn+4([0, 1]).

Theorem 6.2. Let ∆N = {0 = τ1 < τ2 < ... < τN = 1} be a partition of the
interval [0, 1], and δ = δ(∆N ) = max1≤i≤N−1 ∆τi. Also suppose that ϕN (τ) be the
approximate solution of the above problems in the Hilbert space H5([0, 1]) and f be a
given continuous function. The following relation hold,

∥ϕ(τ)− ϕN (τ)∥∞ ≤ const δ2, (6.20)



182 R. KHOSHSIAR GHAZIANI, M. FARDI, AND M. GHASEMI

where const is a real constant.
Proof First, we define the following residual function for any ϕN (τ) as an approxi-
mate solution of the problem

ΞN (τ) = Dαn
∗τ ϕN (τ)− f(τ, ϕ(τ), Dα1

∗τ ϕN (τ), · · · , Dαn−1
∗τ ϕN (τ)) ̸= 0. (6.21)

We know ΞN (τm) = 0, 1 ≤ m ≤ N , on subinterval [τi, τi+1], by applying the Roll’s

theorem to ΞN (τ), once more we get Ξ
′

N (ςi) = 0, ςi ∈ [τi, τi+1], i = 1, 2, ..., N − 1.

The piecewise linear interpolant p∆N
(Ξ

′

N ; τ) of Ξ
′

N (τ) is defined by the following two
requirements
(a) For each i = 1, 2, ..., N − 2, p∆N

(Ξ
′

N ; τ)|[ςi,ςi+1] is linear.

(b) For each i = 1, 2, ..., N − 2, p∆N
(Ξ

′

N ; ςi) = Ξ
′

N (ςi).

For a function Ξ̂′
N (τ), let p(Ξ

′

N ; τ) be its linear interpolant, since Ξ
′

N (ςi) = Ξ
′

N (ςi+1) =
0, then we have

p(Ξ
′

N ; τ) = Ξ
′

N (ςi)
(ςi+1 − τ)

ςi+1 − ςi
+ Ξ

′

N (ςi+1)
(ςi − τ)

ςi+1 − ςi
= 0, ςi ≤ τ ≤ ςi+1. (6.22)

By the Taylor’s theorem

Ξ
′

N (τ) = (τ − ςi)
d2

dτ2
ΞN (τ) +

∫ ςi

τ

(t− ςi)
d3

dt3
ΞN (t)dt, (6.23)

Ξ
′

N (τ) = (τ − ςi+1)
d2

dτ2
ΞN (τ) +

∫ ςi+1

τ

(t− ςi+1)
d3

dt3
ΞN (t)dt. (6.24)

Thus, from (6.23) and (6.24) we have

Ξ
′

N (τ) =
τ − ςi

ςi+1 − ςi

∫ ςi+1

τ

(t− ςi+1)
d3

dt3
ΞN (t)dt

+
ςi+1 − τ

ςi+1 − ςi

∫ ςi

τ

(t− ςi)
d3

dt3
ΞN (t)dt, (6.25)

and therefore for a const1∫ ςi+1

ςi

|Ξ
′

N (τ)|2dτ ≤ const1

∫ ςi+1

ςi

| d
3

dτ3
ΞN (τ)|2dτ. (6.26)

Using (6.26) we have∫ ςi+1

ςi

|Ξ
′

N (τ)|2dτ =
1

∆ςi

∫ 1

0

| d
dt

ΞN (ςi + t∆ςi)|2dt

≤ const1
∆ςi

∫ 1

0

| d
3

dt3
ΞN (ςi + t∆ςi)|2dt

= const1 ∆4ςi

∫ ςi+1

ςi

| d
3

dτ3
ΞN (τ)|2dτ. (6.27)
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Therefore,

∥Ξ
′

N (τ)∥2L2[ς1,ςN−1]
=

∫ ςN−1

ς1

|Ξ
′

N (τ)|2dτ

=
N−2∑
i=1

∫ ςi+1

ςi

|Ξ
′

N (τ)|2dτ ≤ const2 δ4. (6.28)

Also, for τ ∈ [0, ς2], there exists ϱ ∈ [min{ς1, ς2, τ},max{ς1, ς2, τ}] such that

Ξ
′

N (τ) = (τ − ς1)(τ − ς2)ΞN [ς1, ς2, τ, τ ]

where the quantity ΞN [ς1, ς2, τ, τ ] is a Newton divided difference of order three for
function ΞN (τ).
From the above formula, we deduce

∥Ξ
′

N (τ)∥2L2[0,ς1]
≤ ∥Ξ

′

N (τ)∥2L2[0,ς2]
≤ const3 δ4. (6.29)

A similar argument shows

∥Ξ
′

N (τ)∥2L2[ςN−1,1]
≤ ∥Ξ

′

N (τ)∥2L2[ςN−2,1]
≤ const4 δ4. (6.30)

Using (6.28), (6.33) and (6.30), we have

∥Ξ
′

N∥2L2[0,1] ≤ const5 δ4, (6.31)

where const5 = const2 + const3 + const4.
Now, in each subinterval [τi, τi+1], we have

ΞN (τ) =

∫ τ

τi

d

dt
ΞN (t)dt, (6.32)

then, it holds

∥ΞN (τ)∥2∞ ≤ const6 δ6. (6.33)

Using (6.31) and (6.33) we have

∥ΞN (τ)∥H1 ≤ const7 δ2, (6.34)

where const7 is a constant.
By using Theorem 3.7 and Theorem 3.8, we can obtain the following error bound

∥ϕ(τ)− ϕN (τ)∥∞ ≤ const δ2, (6.35)

6.3. Error analysis in Hn+5([0, 1]).

Theorem 6.3. Let ∆N = {0 = τ1 < τ2 < ... < τN = 1} be a partition of the
interval [a, b], and δ = δ(∆N ) = max1≤i≤N−1 ∆τi. Also suppose that ϕN (τ) be the
approximate solution of the above problems in the Hilbert space H6([0, 1]) and f be a
given continuous function. The following relation hold,

∥ϕ(τ)− ϕN (τ)∥∞ ≤ const δ3, (6.36)

where const is a real constant.
Proof First, we define the following residual function for any ϕN (τ) as an approxi-
mate solution of the problem

ΞN (τ) = Dαn
∗τ ϕN (τ)− f(τ, ϕ(τ), Dα1

∗τ ϕN (τ), · · · , Dαn−1
∗τ ϕN (τ)) ̸= 0. (6.37)
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Since ΞN (τm) = 0, 1 ≤ m ≤ N , on subinterval [τi, τi+1], by applying the Roll’s the-

orem to ΞN (τ), we get Ξ
′

N (ςi) = 0, ςi ∈ [τi, τi+1], i = 1, 2, ..., N − 1, by applying

the Roll’s theorem to Ξ
′

N (τ), we have Ξ
′′

N (σi) = 0, σi ∈ [ςi, ςi+1], i = 1, 2, ..., N − 2.

The piecewise linear interpolant p∆N
(Ξ

′′

N ; τ) of Ξ
′′

N (τ) is defined by the following two
requirements
(a) For each i = 1, 2, ..., N − 3, p∆N

(Ξ
′′

N ; τ)|[σi,σi+1] is linear.

(b) For each i = 1, 2, ..., N − 3, p∆N
(Ξ

′′

N ;σi) = Ξ
′′

N (σi).

For a function Ξ
′′

N (τ), let p(Ξ
′′

N ; τ) be its linear interpolant, Since Ξ
′′

N (σi) = Ξ
′′

N (σi+1) =
0, then we have

p(Ξ
′′

N ; τ) = Ξ
′′

N (σi)
(σi+1 − τ)

σi+1 − σi
+ Ξ

′′

N (σi+1)
(σi − τ)

σi+1 − σi
= 0, σi ≤ τ ≤ σi+1. (6.38)

By the Taylor’s theorem

Ξ
′′

N (τ) = (τ − σi)
d3

dτ3
ΞN (τ) +

∫ σi

τ

(t− σi)
d4

dt4
ΞN (t)dt, (6.39)

Ξ
′′

N (τ) = (τ − σi+1)
d3

dτ3
ΞN (τ) +

∫ σi+1

τ

(t− σi+1)
d4

dt4
ΞN (t)dt. (6.40)

Thus, from (6.39) and (6.40) we obtain

Ξ
′′

N (τ) =
τ − σi

σi+1 − σi

∫ σi+1

τ

(t− σi+1)
d4

dt4
ΞN (t)dt

+
σi+1 − τ

σi+1 − σi

∫ σi

τ

(t− σi)
d4

dt4
ΞN (t)dt, (6.41)

and for τ ∈ [σi, σi+1], it follows that

Ξ
′

N (τ) =

∫ τ

σi

Ξ
′′

N (τ)dτ

=

∫ τ

σi

s− σi

σi+1 − σi
(

∫ σi+1

s

(t− σi+1)
d4

dt4
ΞN (t)dt)ds

+

∫ τ

σi

σi+1 − s

σi+1 − σi
(

∫ σi

s

(t− σi)
d4

dt4
ΞN (t)dt)ds, (6.42)

and consequently∫ σi+1

σi

|Ξ
′′

N (τ)|2dτ ≤ const1 ∆2σi

∫ σi+1

σi

| d
4

dτ4
ΞN (τ)|2dτ. (6.43)

Using (6.43), we obtain∫ σi+1

σi

|Ξ
′

N (τ)|2dτ =
1

∆3σi

∫ 1

0

| d
2

dt2
ΞN (σi + t∆σi)|2dt

≤ const1
∆σi

∫ 1

0

| d
4

dt4
ΞN (σi + t∆σi)|2dt

= const1 ∆6σi

∫ σi+1

σi

| d
4

dτ4
ΞN (τ)|2dτ. (6.44)
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Therefore,

∥Ξ
′

N (τ)∥2L2[σ1,σN−2]
=

∫ σN−2

σ1

|Ξ
′

N (τ)|2dτ

=
N−3∑
i=1

∫ σi+1

σi

|Ξ
′

N (τ)|2dτ ≤ const2 δ6, (6.45)

Also, for τ ∈ [0, ς3], there exists ϱ ∈ [min{ς1, ς2, ς3, τ},max{ς1, ς2, ς3, τ}] such that

Ξ
′

N (τ) = (τ − ς1)(τ − ς2)(τ − ς3)ΞN [ς1, ς2, ς3, τ, τ ]

where the quantity ΞN [ς1, ς2, ς3, τ, τ ] is a Newton divided difference of fourth order for
function ΞN (τ).
From the above formula it holds

∥Ξ
′

N (τ)∥2L2[0,σ1]
≤ ∥Ξ

′

N (τ)∥2L2[0,ς2]
≤ const3 δ6. (6.46)

A similar argument shows

∥Ξ
′

N (τ)∥2L2[σN−1,1]
≤ ∥Ξ

′

N (τ)∥2L2[ςN−3,1]
≤ const4 δ6. (6.47)

Using (6.45), (6.50) and (6.47), we get

∥Ξ
′

N∥2L2[0,1] ≤ const5 δ6, (6.48)

where const5 = const2 + const3 + const4.
Now, in each subinterval [τi, τi+1], we have

ΞN (τ) =

∫ τ

τi

d

dt
ΞN (t)dt, (6.49)

then, it follows that

∥ΞN (τ)∥2∞ ≤ const6 δ8. (6.50)

Using (6.48) and (6.50) we have

∥ΞN (τ)∥H1 ≤ const7 δ3, (6.51)

where const7 is a constant.
By using Theorem 3.7 and Theorem 3.8, we can obtain the following error bound

∥ϕ(τ)− ϕN (τ)∥∞ ≤ const δ3, (6.52)

7. Numerical examples

In this section, some illustrative examples are considered to reveal the effectiveness
and the accuracy of the proposed method for solving multi-order fractional differential
equations. All of the computations have been performed by using the Maple software
package.
In these examples, we report absolute error which is defined as:

eN = |ϕ(τ)− ϕN (τ)|. (7.1)

The numerical results in Tables 1 and 2 show that the approximate solution converge
to the exact solution.
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Figure 1. The absolute error using the technique given for α2 =
2, α1 = 0 in H5 and H6.
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Example 7.1. Consider the following equation

D
3
2
∗τϕ(τ) + 2D1ϕ(τ) + 3

√
τD

1
2
∗τϕ(τ) + (1− τ)ϕ(τ) = g(τ),

D(0)ϕ(0) = 0, D(1)ϕ(0) = 0, (7.2)

where g(τ) = 2
Γ( 3

2 )
τ

1
2 + 4τ + 4

Γ( 3
2 )
τ2 + (1 − τ)τ2. The exact solution is ϕ(τ) = τ2.

The absolute values of the errors are given in Table 1 for τi = i
N , i = 1, . . . , N for

N = 20, 25. From the numerical results, it is clear that the approximate solutions
are in good agreement with the exact solution. Also it is clear form Tables 1 that by
increasing the value of r we get the better results.

Table 1. Absolute Error eN for Example 1.

ϕ ∈ H5 ϕ ∈ H6

N = 20 N = 25 N = 20 N = 25

0.1 6.207E-8 3.639E-8 6.667E-9 6.026E-9
0.2 7.730E-7 3.128E-7 5.779E-8 3.144E-8
0.3 8.277E-6 3.388E-6 4.294E-7 1.085E-7
0.4 3.065E-6 2.718E-6 6.237E-7 2.800E-7
0.5 4.791E-5 1.291E-5 5.328E-6 3.310E-6
0.6 8.511E-5 3.206E-5 6.494E-6 1.264E-6
0.7 9.213E-5 4.916E-5 7.865E-6 5.310E-6
0.8 5.615E-4 1.121E-4 8.768E-5 2.824E-5
0.9 6.214E-4 2.419E-4 7.754E-5 3.059E-5
1.0 8.360E-4 2.965E-4 6.354E-5 4.391E-5
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Table 2. Numerical solution using the technique given for 0 ≤ τ ≤ 1
and for different α1 and α2 values.

ϕ ∈ H5 ϕ ∈ H6

α2 = 1.1 α2 = 1.4 α2 = 1.9 α2 = 1.3 α2 = 1.8 α2 = 1.9
α1 = 0.5 α1 = 0.6 α1 = 0.8 α1 = 0.4 α1 = 0.2 α1 = 0.1

0.1 0.095162 0.091184 0.096465 0.093435 0.099326 0.099662
0.2 0.181269 0.170796 0.185226 0.176480 0.195938 0.197658
0.3 0.259181 0.241989 0.266285 0.251071 0.288435 0.292745
0.4 0.329679 0.306409 0.339955 0.318451 0.375803 0.383862
0.5 0.393469 0.365174 0.406647 0.379573 0.457260 0.470073
0.6 0.451188 0.419115 0.466811 0.435206 0.532204 0.550561
0.7 0.503414 0.468880 0.520909 0.485991 0.600185 0.624611
0.8 0.550671 0.514991 0.569397 0.532471 0.660883 0.691618
0.9 0.593430 0.557879 0.612717 0.575111 0.714098 0.751076
1.0 0.632120 0.597901 0.651292 0.614315 0.714098 0.802582

Example 7.2. Now, let us consider the following equation

Dα2
∗τ ϕ(τ) + Dα1

∗τ ϕ(τ) = 0, (7.3)

D(0)ϕ(0) = 0, D(1)ϕ(0) = 1. (7.4)

where 1 < α2 ≤ 2 and 0 ≤ α1 < 1. The exact solution of this problem for α2 = 2 and
α1 = 0 is ϕ(τ) = sin(τ). Using the proposed method, we choose 40 points in [0,1],
and calculate the absolute errors in H5 and H6, the computational errors are plotted
in Figure 1. The results show that the approximate solutions are in a good agreement
with the exact solution when α2 = 2 and α1 = 0. Table 2 shows the approximation
values in some points τ ∈ [0, 1] for different α2 and α1.

Example 7.3. We consider the following multi-order fractional differential equation
of the form [31]

µ1D
α2
∗τ ϕ(τ) + µ2D

α1
∗τ ϕ(τ) + µ3ϕ

3(τ) = g(τ), (7.5)

D(0)ϕ(0) = 0, 0 < α1 < α2 ≤ 1, (7.6)

where

g(τ) =
2µ1τ

3−α2

Γ(4− α2)
+

2µ2τ
3−α1

Γ(4− α1)
+

µ3τ
9

27
. (7.7)

The exact solution of this equation is ϕ(τ) = τ3

3 . The absolute values of the errors

are given in Table 3 for τi =
i
N , i = 1, . . . , N for N = 40, 50. From Table 3 we can see

that the approximate solutions obtained by present method are in prefect agreement
with the exact solution for α1 = 1

3 , α2 = 1
2 , µ1 = µ2 = µ3 = 1.



188 R. KHOSHSIAR GHAZIANI, M. FARDI, AND M. GHASEMI

Table 3. Absolute Error eN for Example 3.

ϕ ∈ H4 ϕ ∈ H5

N = 40 N = 50 N = 40 N = 50

0.1 4.204E-6 2.997E-6 3.785E-6 1.178E-7
0.2 6.545E-6 5.548E-6 5.345E-6 3.389E-6
0.3 3.744E-5 2.784E-5 4.342E-6 3.378E-6
0.4 4.162E-5 3.977E-5 2.234E-5 1.431E-5
0.5 5.489E-5 5.259E-5 4.125E-5 2.256E-5
0.6 6.234E-4 6.034E-4 5.907E-5 3.542E-5
0.7 8.981E-4 7.634E-4 6.675E-4 5.157E-4
0.8 5.554E-4 5.114E-4 5.456E-4 4.871E-4
0.9 6.412E-3 6.321E-3 2.341E-3 1.456E-3
1.0 5.631E-3 4.981E-3 3.641E-3 2.641E-3

8. Concluding Remarks

There are some main goals that we aimed by this work. The first is to present
a relatively new semi-analytical technique to derive approximate analytical solution
for nonlinear multi-order FDEs. The second is to addresse the sufficient conditions
for uniqueness of solution and to study technique in different RKHS. Furthermore,
the numerical tests are presented to show the accuracy of the proposed technique.
The numerical results demonstrate the relatively rapid convergence of the proposed
technique. We should also point out that the example studied in the paper shows
that the technique is very effective and convenient for solving nonlinear multi-order
FDEs.
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