تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,487,287 |
تعداد دریافت فایل اصل مقاله | 15,214,121 |
رابطه بین ویژگیهای مکانیکی و منحنی هدایت هیدرولیکی غیراشباع خاکها | ||
دانش آب و خاک | ||
مقاله 1، دوره 26، شماره 3 بخش 1، آذر 1395، صفحه 1-19 اصل مقاله (391.84 K) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
آزاده صداقت1؛ حسین بیات* 2؛ علی اکبر صفری سنجانی3 | ||
1دانشجوی سابق کارشناسی ارشد دانشگاه بوعلی سینا- همدان | ||
2دانشیار گروه علوم خاک دانشگاه بوعلی سینا- همدان | ||
3استاد گروه علوم خاک دانشگاه بوعلی سینا- همدان | ||
چکیده | ||
هدایت هیدرولیکی خاک از مهمترین ویژگیهای فیزیکی خاک در حالت غیراشباع برای شناخت، بررسی و مدل- سازی انتقال آب، نمکها و آلاینده ها در خاک است. هدف از این پژوهش برآورد هدایت هیدرولیکی غیراشباع با بهره گیری از پارامترهای زودیافت خاک شامل خصوصیات فیزیکی، مکانیکی و شیمیایی با استفاده از روش رگرسیونی و شبکه عصبی مصنوعی بود. در این پژوهش 148 نمونه از 5 استان مازندران، کرمانشاه، آذربایجان غربی و شرقی و همدان با استفاده از خصوصیات فیزیکی، (α و n) جمعآوری شد. پارامترهای هدایت هیدرولیکی غیراشباع مدل ونگنوختن- معلم مکانیکی و شیمیایی بهعنوان تخمینگر در 8 مرحله تخمین زده شدند. سپس با استفاده از پارامترهای تخمین زدهشده در هر مرحله منحنی هدایت هیدرولیکی غیراشباع در دامنه 0 تا 1500 کیلوپاسکال بهدست آمد. برای ارزیابی دقت توابع، منحنیهای تخمینی در هر مرحله با منحنیهای برآوردی از روی منحنی نگهداری آب خاک مقایسه شدند. نتایج شبکه عصبی مصنوعی نسبت بهروش رگرسیونی بهتر بود. چون دامنه معیار آکایک در روش شبکه عصبی مصنوعی بین 4101 - و 1169 - و در روش رگرسیون بین 1379 - و 382 - بود. در میان توابع انتقالی ایجادشده با روش شبکه عصبی مصنوعی، مرحله 8 که از مقاومت کششی علاوه بر خصوصیات پایه خاک بهعنوان برآوردگر بهرهگیری نموده بود، بهبود بیشتری نسبت به سایر توابع انتقالی در برآورد هدایت هیدرولیکی غیراشباع داشت. متغیرهایی که تغییرپذیری کمی دارند نتوانستند برآورد هدایت هیدرولیکی را بهبود دهند ولی پارامترهایی که تغییرپذیری بالایی دارند مانند مقاومت کششی باعث بهبود برآورد هدایت هیدرولیکی شدند. | ||
کلیدواژهها | ||
تخمین؛ توابع انتقالی؛ مدلهای هدایت هیدرولیکی؛ مقاومت کششی؛ هدایت هیدرولیکی غیراشباع | ||
مراجع | ||
امامی ح، شرفا م و نیشابوری م، 1391. ارزیابی هدایت هیدرولیکی نقطه عطف منحنی مشخصه رطوبتی بهعنوان مرجع در برخی مدلهای هدایت هیدرولیکی غیراشباع خاک. مجله علوم و فنون کشاورزی و منابع طبیعی، علوم آب و خاک، جلد 59، سال 16، صفحههای 162 تا 189 . بیات ح، صداقت آ، دواتگر ن و صفری سنجانی ع ا، 1393. کاربرد پارامترهای فراکتالی توزیع اندازه ذرات و خاکدانههای ریز در برآورد هدایت هیدرولیکی اشباع خاکهای استان گیلان. پژوهشهای خاک، جلد 28، شماره 2، صفحههای 447 تا 458. عباسی ف، 1386. فیزیک خاک پیشرفته. انتشارات دانشگاه تهران. 250 صفحه. بیات ح، ابراهیمی ع، راستگو م، زارع ابیانه ح و دواتگر ن، 1392. برازش مدلهای مختلف منحنی مشخصه آب خاک بر دادههای تجربی در کلاسهای بافتی متفاوت استان گیلان. نشریه دانش آب و خاک، جلد23، شماره 3، صفحههای 151 تا 167. قنبریان علویجه ب و عباسی ف، 1389. بررسی تأثیر پارامتر پیوستگی منافذ و ارایه مدلی برای پیشبینی هدایت هیدرولیکی غیراشباع خاک. مجله پژوهش آب در کشاورزی، جلد 24، شماره 1، صفحههای 51 تا 63 . طاحونی ش. 1387. اصول مهندسی ژئوتکنیک (جلد اول- مکانیک خاک)- ترجمه. نویسنده: براجا ام. داس، چاپ 17، انتشارات موسسه انتشاراتی پارس آیین. Abedin MZ and Hettiaratchi DRP, 2002. SW-Soil and Water: State parameter interpretation of cone penetration tests in agricultural soils. Biosystems Engineering 83: 469-479. Agyare WA, Park SJ and Vlek PLG, 2007. Artificial neural network estimation of saturated hydraulic conductivity. Vadose Zone Journal 6: 423-431. Akaike H, 1974. New look at the statistical model identification. IEEE Transactions on Automatic Control 19: 716-723. Anonymous, 1975. Methods for Testing Soil for Civil Engineering Purposes. British Standard Institution 1377, London 134p. Baker D and Ayers P, 1990. A wetting front arrival time probe .Transactions of the American Society of Agricultural Engineers 33: 138-144. Benson C, Zhai H and Wang X, 1994. Estimating the hydraulic conductivity of compacted clay liners. Journal of Geotechnical Engineering ASCE 120: 366-387. Bayat H, Neyshaburi MR, Mohammadi K, Nariman-Zadeh N and Irannejad M, 2013. Improving water content estimations using penetration resistance and principal component analysis. Soil and Tillage Research 129: 83-92. Benson CH and Trast J, 1995. Hydrulic conductivity of thirteen compacted clays. Clays and Clay Minerals 43: 669-681. Bouma J, 1989. Using soil survey data for quantitative land evaluation. Advances in Soil Science 9: 177-213. Bruand A and Tessier D, 2000. Water retention properties of the clay in soils developed on clayey sediments: significance of parent material and soil history. European Journal of Soil Science 51: 679-688. Carsel RF and Parrish RS, 1988. Developing joint probability distributions of soil water retention characteristics. Water Resources Research 24: 755–769. Causarano H, 1993. Factors affecting the tensile strength of soil aggregates. Soil and Tillage Research 28: 15-25. Dexter A, Czyż EA and Gaţe OP, 2007. A method for prediction of soil penetration resistance. Soil and Tillage Research 93: 412-419. Dexter AR, Czyz EA and Gate OP, 2004. Soil structure and the saturated hydraulic conductivity of subsoils. Soil and Tillage Research 79: 185 – 189. Dexter AR and Watts CW, 2001. Tensile Strength and Friability. Pp. 405-434. In: Smith KA and Mullins CE, (eds). Soil and Environmental Analysis. Marcel Dekker, Inc. New York. Doai M, Shabanpour-e-shahrestani M and Bagheri F, 2005. Modelling of saturated hydraulic conductivity of Gilan Province involving Artificial Neural Networks. The Agricultural Science Research 6: 41-48 Emerson W, Greenland DJ, Boodt MD, Hayes MHB and Herbillon A, 1990. Soil aggregates-formation and stability. Soil colloids and their associations in aggregates, Plenum Press 485-511. Farrell DA, Greacen EL and Larson WE, 1967. The effect of water content on axial strain in a loam soil under tension and compression. Soil Science Society of America Journal 31: 445-450. Foley J, Tolmie PE and Silburn DM, 2006. Improved measurement of conductivity on swelling clay soils using a modified disc permeameter method. Soil Research 44:701-710. Gee GW and Or D, 2002. Particle- Size analysis. Pp. 225-295. In: Warren AD, (ed). Methods of Soil Analysis. Part 4. Physical Methods. Soil Science Society of America Inc. Grossman RB and Reinsch TG, 2002. Bulk density and linear extensibility. Pp. 201-228. In: Warren AD, (ed). Methods of Soil Analysis. Part 4. Physical Methods. Soil Science Society of America Inc. Guerif J, 1990. Factors influencing compaction-induced increases in soil strength. Soil and Tillage Research 16: 167-178. Hillel D, 1980. Fundamentals of Soil Physics. Academic Press, Inc. (London) Ltd. Hodnett M and Tomasella J, 2002. Marked differences between van Genuchten soil water-retention parameters for temperate and tropical soils: a new water-retention pedo-transfer functions developed for tropical soils. Geoderma 108: 155-180. Horn R and Dexter AR, 1989. Dynamics of soil aggregation in an irrigated desert loess. Soil and Tillage Research 13: 253 –266. Hudson B, 1994. Soil organic matter and available water capacity. Journal of Soil Water Conservation 49:189–193. Hwang SI and Powers SE, 2003. Using particle-size distribution models to estimate soil hydraulic properties. Soil Science Society of America Journal 4: 1103-1112. Hwang SI, Lee KP, Lee DS and Powers SE, 2002. Models for estimating soil particle-size distributions. Soil Science Society of America Journal 66:1143-1150. Igwe CA and Udegbunam ON, 2008. Soil properties influencing water dispersible clay and silt in an Ultisol in Southern Nigeria. International Agrophysics 22: 319-325. Jarvis NJ, Zavattaro L, Rajkai K, Reynold WDS, Olsen PA, McGechan M, Mecke M, Mohanty B, Leeds-Harrison PB and Jacques D, 2002. Indirect estimation of near-saturated hydraulic conductivity from readily available soil information. Geoderma 108:1–17. Jong Ed, Acton DF and Stonehouse HB, 1990. Estimating the Atterberg limits of southern Saskatchewan soils from texture and carbon contents. Canadian Journal of Soil Science 70: 543-554. Kay B and Dexter A, 1992. The influence of dispersible clay and wetting/drying cycles on the tensile strength of a red-brown earth. Soil Research 30: 297-310. Klute A and Dirksen C, 1986. Hydraulic conductivity and diffusivity: laboratory methods.Pp. 687–734. In: Klute A, (ed). Methods of Soil Analysis. Part 1 Soil Science Society of America Journal. Inc., Wisconsin, USA. Manrique LA, Jones CA and Dyke PT, 1991. Predicting cation-exchange capacity from soil physical and chemical properties. Soil Science Society of America Journal 55: 787-794. Minasny B, Hopmans JW, Harter T, Eching SO, Tuli A and Denton MA, 2004. Neural networks prediction of soil hydraulic functions for alluvial soils using multistep outflow data. Soil Science Society of America Journal 68: 417-429. Minasny B and McBratney A, 2007. The method for fitting neural network parametric pedotransfer functions. Soil Science Society of America Journal 66: 352-36 Mishra S, Parker JC and Signal N, 1990. Estimation of soil hydraulic conductivity properties and their uncertainly from particle size distribution data. Journal of Hydrology 108: 1-18. Mohanty B, Ankeny MD, Horton R and Kanwar RS, 1994. Spatial analysis of hydraulic conductivity measured using disc infiltrometers. Water Resources Research 30: 2489-2498. Mosaddeghi MR and Mahboubi AA, 2011. Point pedotransfer functions for prediction of water retention of selected soil series in a semi-arid region of western Iran. Archives of Agronomy and Soil Science 57: 327-342. Mualem Y, 1976. A Catalogue of the Hydraulic Properties of Unsaturated Soils. Technion Israel Institute of Technology, Technion Research & Development Foundation 100 p. Nemes A, Rawls WJ and Pachepsky YA, 2005. Influence of organic matter on the estimation of saturated hydraulic conductivity. Soil Science Society of America Journal 69: 1330-1337. Nemes A and Rawls WJ, 2006. Evaluation of different representations of the particle-size distribution to predict soil water retention. Geoderma 132: 47-58. Pachepsky YA, Timlin D and Varallyay G, 1996. Artificial neural networks to estimate soil water retention from easily measurable data. Soil Science Society of America Journal 60: 727-733. Perumpral JV, Grisso RD and Desai CS, 1983. A soil-tool model based on limit equilibrium analysis [Mathematical, tillage tool performance in soils]. Transactions of the American Society of Agricultural Engineers 4: 991- 995. Rasse DP, Smucker AJM and Santos D, 2000. Alfalfa root and shoot mulching effects on soil hydraulic properties and aggregation. Soil Science Society of America Journal 64: 725-731. Rawls W and Pachepsky YA, 2002. Soil consistence and structure as predictors of water retention. Soil Science Society of America Journal 66: 1115-1126. Rawls WJ, Brakensiek CL and Saxton KE 1982. Estimation of soil water properties. Transactions of the American Society of Agricultural Engineers 25: 1316-1328 Saxton K, Rawls WJ, Romberger JS and Papendick RI, 1986. Estimating generalized soil-water characteristics from texture. Soil Science Society of America Journal 50: 1031-1036. Sedaghat A, Bayat H and Safari Sinegani AK, 2016. Estimation of soil saturated hydraulic conductivity by artificial neural networks ensemble in smectite soils. Eurasian Soil Science 49 (3): 347–357 Schaap MG and Leij FJ, 1998. Using neural networks to predict soil water retention and soil hydraulic conductivity. Soil and Tillage Research 47: 37-42. Sims JT, Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT and Sumner ME, 1996. Lime requirement, Pp. 491-515. In: Sparks DL, (ed). Methods of Soil Analysis. Part 3-Chemical Methods. Soil Science Society of America Inc. Simunek J and Van Genuchten MT, 1997. Estimating unsaturated soil hydraulic properties from multiple tension disc infiltrometer data. Soil Science 162: 383-398. Sumner ME and Miller WP, 1996. Cations exchange capacity and Exchange Coefficients. Pp. 1201-1230. In: Sparks DL,(ed). Methods of Soil Analysis, Part 3- Chemical Methods. Agronomy Monograph, vol. 9. ASA and SSSA, Madison, WI. Tamari S, Wösten JHM and Ruiz-Suarez JC, 1996. Testing an artificial neural network for predicting soil hydraulic conductivity. Soil Science Society of America Journal 60: 1732-1741. Tietje O and Tapkenhinrichs M, 1993. Evaluation of pedo-transfer functions. Soil Science Society of America Journal 57: 1088-1095. Tomasella J, Pachepsky Y, Crestana S and Rawls WJ, 2003. Comparison of two techniques to develop pedotransfer functions for water retention. Soil Science Society of America Journal 67: 1085-1092. Van Genuchten MT, 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal 44: 892-898. Vaz CM, Bassoi LH and Hopmans JW, 2001. Contribution of water content and bulk density to field soil penetration resistance as measured by a combined cone penetrometer–TDR probe. Soil and Tillage Research 60: 35-42. Vepraskas M, 1984. Cone index of loamy sands as influenced by pore size distribution and effective stress. Soil Science Society of America Journal 48: 1220-1225. Vereecken H, Maes J, Feyen J and Darius P, 1989. Estimating the soil moisture retention characteristic from texture, bulk density, and carbon content. Soil Science 148: 389-403. Walczak R, Witkowska-Walczak B and Sławiński C, 2004. Pedotransfer studies in Poland. Developments in Soil Science 30: 449-463. Walkley A and Black IA, 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science 37: 29-38. Wosten JHM, 1997. Pedotransfer functions to evaluate soil quality, Pp. 221-245. In: Gregorich EG and Carter MR, (eds). Soil Quality for Crop Production and Ecosystem Health. Developments in Soil Science, Elsevier, Amsterdam, Netherlands.
| ||
آمار تعداد مشاهده مقاله: 1,777 تعداد دریافت فایل اصل مقاله: 1,262 |