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Abstract In this paper, we introduce fractional order of a planar fractional prey-predator
system with a nonmonotonic functional response and anti-predator behaviour such

that the adult preys can attack vulnerable predators. We analyze the existence and
stability of all possible equilibria. Numerical simulations reveal that anti-predator
behaviour not only makes the coexistence of the prey and predator populations
less likely, but also damps the predator-prey oscillations. Therefore, anti-predator

behaviour helps the prey population to resist predator aggression.
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1. Introduction

Fractional calculus is a generalization of classical differentiation and integration
to arbitrary order. In recent years, fractional calculus has been a fruitful field of
research in science and engineering. Meanwhile, applications of fractional differential
equations (FDEs) to physics, biology and engineering are a recent focus of interests
[4, 3, 6, 7, 8, 9, 11, 13]. In this paper we consider a differential equation introduced
in [14, 15]. Biologists routinely label the animals as predator or prey, there is some-
times no obvious winner as prey can sometimes inflict harm on their predators, which
indicates that cyclic dominance is also important for predator-prey interactions. In-
deed, role reversals between predator and prey (i.e. anti-predator behaviour) often
occur. Experiments show that anti-predator behaviour of prey populations is realized
in terms of morphological changes or through changes in behaviour, or the prey at-
tack their predators [1, 5, 12]. Anti-predator behaviour requires that adult prey are
not just invulnerable to their predators, but they can even kill the juveniles of their
predators.
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Based on the system given in [14], we consider the impact of anti-predator be-
haviour of the following model:


dx

dt
= rx(1− x

k
)− βxy

a+ x2
,

dy

dt
=

µβxy

a+ x2
− dy − ηxy,

(1.1)

where x(t) and y(t) are the densities of the prey and the predator , respectively. r is
the intrinsic growth rate of the prey, k is the carrying capacity of the environment, β
is the capture rate of the predator, µ is the conversion rate of prey into predator, d is
the natural death rate of the predator population, a is the half-saturation constant,
and η is the rate of anti-predator behaviour of prey to the predator population. The
model is biologically feasible if all the parameters are positive.
Starting from the integer-order prey-predator model presented by (1.1), we intro-
duce the fractional order derivatives by replacing the usual integer-order derivatives
by fractional order Caputo-type derivatives to obtain the following fractional order
system:

dαx

dt
= rx(1− x

k
)− βxy

a+ x2
,

dαy

dt
=

µβxy

a+ x2
− dy − ηxy,

(1.2)

with the initial conditions

x(0) > 0, y(0) > 0,

where α ∈ (0, 1).
The fractional order systems are more suitable than integer-order in biological mod-
elling due to the memory effects.
The aim of this paper is to examine the stability properties of the equilibria of the
system (1.2) and deriving conditions under which the system may exhibit a Hopf
bifurcation. It turns out that dynamical behaviour of system (1.2) changes dramati-
cally, comparing to that of the integer order system, when α decreases and crosses a
threshold.

The rest of this paper is organized as follows: In Section 2, we present some
basic materials on fractional calculus. A detailed analysis on the stability and Hopf
bifurcation of the equilibria is carried out in Section 3. In Section 4, we perform
numerical simulations of the system by computing different orbits of the fractional
system. In Section 5, we conclude the paper.

2. Preliminaries

Two types of fractional derivatives of Riemann-Liouville and Caputo derivatives,
have been often used in fractional differential systems. We briefly recall these two
definitions.
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Definition 2.1. The Riemann-Liouville integral Jα
t0 with fractional order α ∈ (0,∞)

of function x(t) is defined as:

Jα
t0x(t) :=

1

Γ(α)

∫ t

t0

(t− τ)α−1x(τ)dτ,

where Γ(.) is the gamma function. For α = 0 we set J0
t0 := Id, the identity operator.

Definition 2.2. The Riemann-Liouville derivative with fractional order α ∈ R+ :=
[0,∞) of function x(t) is defined by:

D
RL

α

t0
x(t) :=

dm

dtm
Jm−α
t0 x(t),

where m = ⌈α⌉ := min{k ∈ Z : k ≥ α}, is the ceiling of α. For α = 0, we set D
RL

0

t0
= I

the identity operator..

Definition 2.3. The Caputo derivative with fractional order α ∈ R+ of function x(t)
is defined by:

dα

dtα
x(t) := Jm−α

t0

dm

dtm
x(t),

where m = ⌈α⌉.

Proposition 2.4. [2]
Consider the N−dimensional fractional differential equation system

dαx(t)

dtα
= Ax(t), x(0) = x0 ∈ RN , α ∈ (0, 1),

where x(t) = (x1(t), x2(t), . . . , xN (t))T ∈ RN and AN×N is an arbitrary constant
matrix.
(i) The solution x = 0 is asymptotically stable, if and only if all eigenvalues λj

(j = 1, 2, . . . , N) of A satisfy | arg(λj)| > απ
2 .

(ii) The solution x = 0 is stable, if and only if all eigenvalues of A satisfy | arg(λj)| ≥
απ
2 and eigenvalues with | arg(λj)| = απ

2 have the same geometric multiplicity and
algebraic multiplicity.

Proposition 2.5. [10]
Consider the following fractional-order system:

dαx(t)

dtα
= f(x(t)), x(0) = x0 ∈ RN , α ∈ (0, 1),

where x(t) = (x1(t), x2(t), . . . , xN (t))T ∈ RN and f : [f1, f2, . . . , fN ]T : RN −→
RN .The equilibrium points of the above system are solutions to the equation f(x(t)) =
0. An equilibrium is asymptotically stable if all eigenvalues λj of the Jacobian matrix

J =
∂f

∂x
=

∂(f1, f2, . . . , fN )

∂(x1, x2, . . . , xN )
evaluated at the equilibrium satisfy | arg(λi)| > απ

2 .
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Definition 2.6. An equilibrium point is of saddle type if the Jacobian matrix at this
point has at least one eigenvalue λ1 in the stable region i.e.,
| arg(λ1)| > απ

2 and has at least one eigenvalue λ2 in the unstable region i.e., | arg(λ2)| <
απ
2 .

3. Equilibria of the fractional order system and their stability

Equilibria of the system (1.2) are solutions to the system:{ dαx(t)
dtα = 0,

dαy(t)
dtα = 0,

which are as follows:

1) The origin E0 = (0, 0).

2) The axial equilibrium point at Ek = (k, 0) which exists irrespective of any para-
metric restriction.
3) The interior equilibrium satisfy the following equations{

rx(1− x
k )−

βxy
a+x2 = 0,

µβx
a+x2 − d− ηx = 0,

Thus we must have x < k and

ηx3 + dx2 + (ηa− µβ)x+ da = 0 (3.1)

Therefore, existence of a positive equilibrium of model (1.2) is equivalent to the Eq.
(3.1) admitting a positive root which is less than k. In this case, if we set

∆ = M3 + (9η2a− 9µβη − 3d2)M + 2d3 + 18η2ad+ 9µβηd,

M =
√
d2 − 3η(ηa− µβ),

then we deduce the following theorem:

Proposition 3.1. (i) If ηa−µβ ≥ 0 the system(1.2) does not have any positive equi-
librium.
(ii) If ηa − µβ < 0 and ∆ > 0 then the system(1.2) does not have any positive equi-
librium.
(iii) If ηa− µβ < 0 and ∆ < 0, there are two positive equilibria

E1 = (x1, y1) =
(−d+M(cos( θ3 )−

√
3 sin( θ3 ))

3η
,
r

β
(1− x1

k
)(a+ x2

1)
)
,

E2 = (x2, y2) =
(−d+M(cos( θ3 ) +

√
3 sin( θ3 ))

3η
,
r

β
(1− x2

k
)(a+ x2

2)
)
,

whenever x2 < k, in which

θ = arccos(
2M2d− 3η(dηa− dµβ − 9ηad)

2M3
)
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(iv) If ηa − µβ < 0 and ∆ = 0 then the positive equilibria E1 and E2 coincide into
one positive equilibrium, which is denoted by

E∗ = (x∗, y∗) = (
−d+M

3η
,
r

β
(1− x∗

k
)(a+ x2

∗)),

whenever x∗ < k.

Proof. We define f(x) = ηx3+dx2+(ηa−µβ)x+da. It is easy to see that f ′′(x) > 0
for all x > 0, which indicates that f ′(x) is strictly monotonically increasing in the
interval (0,+∞). If ηa − µβ ≥ 0, then we can see that f ′(x) > 0 for all x > 0, and
consequently the function f(x) is strictly monotonically increasing for all x > 0. This
shows that f(x) > f(0) = ad > 0 when x > 0. Thus, there is no positive root for the
equation f(x) = 0, and hence the system (1.2) does not have any positive equilibrium.

If ηa − µβ < 0, it is easy to see that f ′(x) = 0 has a positive root, denoted by
x∗ = −d+M

3η . Thus, f(x) is strictly monotonically increasing in the interval (0, x∗)

and is strictly monotonically decreasing in the interval (x∗,+∞). We notice that if
f(x∗) > 0 i.e., ∆ > 0 then there is no positive root of the equation f(x) = 0.

If f(x∗) < 0, i.e., ∆ < 0, then f(x) = 0 has two positive roots denoted by x1 and x2.

If f(x∗) = 0, i.e. ∆ = 0, then f(x) = 0 has only one positive root x∗.
Now, by using this fact that x1 < x∗ < x2 the proof becomes clear. �

Remark 3.2. If ηa − µβ < 0, ∆ < 0 and x1 < k ≤ x2, then the system (1.2) has
only one positive equilibrium E1.

We now derive stability conditions for feasible equilibrium points of the system (1.2)
by using Theorem 2.5. The Jacobian matrix of the system (1.2) at any point (x, y) is
given by:

J =

(
r(1− x

k )−
βy

a+x2 − rx
k + 2βx2y

(a+x2)2
−βx
a+x2

µβy(a−x2)
(a+x2)2 − ηy µβx

a+x2 − d− ηx

)
,

Proposition 3.3.
(i) E0 is always a saddle point.

(ii) Ek = (k, 0) is asymptotically stable when µβk
a+k2 − d− ηk < 0.

Proof. (i) The Jacobian matrix of system (1.2) evaluated at E0 is

J |E0 =

(
r 0
0 −d

)
,

The eigenvalues of J |E0 are λ1 = r > 0, λ2 = −d < 0. Thus | arg(λ1)| = 0 < απ
2 and

| arg(λ2)| = π > απ
2 . Therefore origin is a saddle point.

(ii) The Jacobian matrix of system (1.2) evaluated at Ek is
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J |Ek
=

(
−r −βk

a+k2

0 µβk
a+k2 − d− ηk

)
,

The eigenvalues of J |Ek
are λ1 = −r < 0, λ2 = µβk

a+k2 − d− ηk. Thus | arg(λ1)| = π >
απ
2 and by assumption we deduce | arg(λ2)| = π > απ

2 . Therefore Ek is asymptotically
stable.

�

Remark 3.4. Ek becomes a saddle point when µβk
a+k2 − d− ηk > 0.

Proposition 3.5. The equilibrium E1 is locally asymptotically stable if one of the
following mutually exclusive conditions holds:
(a) If tr2(J |E1)− 4 det(J |E1) ≥ 0 one must have tr(J |E1) < 0.
(b) If tr2(J |E1)− 4 det(J |E1) < 0 one must have

α <
( 2
π
arctan

√
4 det(J |E1)

tr2(J |E1)
− 1
)
tr(J|E1 )≥0

,

or

α <
(
2− 2

π
arctan

√
4 det(J |E1)

tr2(J |E1)
− 1
)
tr(J|E1

)<0
.

Proof. The Jacobian of (1.2) evaluated at E1 is given by

J |E1 =

 − rx1

k +
2βx2

1y1

(a+x2
1)

2
−βx1

a+x2
1

µβy1(a−x2
1)

(a+x2
1)

2 − ηy1 0

.

We conclude that

det(J |E1) =
βx1y1
a+ x2

1

(µβ(a− x2
1)

(a+ x2
1)

2
− η
)
,

also we have a =
ηx3

1 + dx2
1 − µβx1

−ηx1 − d
, thus

det(J |E1) =
y1

µ(a+ x2
1)

(
µβd− 2η2x3

1 − 4ηdx2
1 − 2d2x1

)
.

Let g(x) = µβd− 2η2x3 − 4ηdx2 − 2d2x. It is easy to check that the function g(x) is
strictly monotonically decreasing when x > 0. It follows from f ′(x1) < 0 that

g(x1) = µβd−2η2x3
1−4ηdx2

1−2d2x1 > η(−2ηx3
1−dx2

1+da) > η(−2ηx3
∗−dx2

∗+da) = 0.

Then we have det(J |E1) > 0, So the stability of the equilibrium E1 depends on the

sign of tr(J |E1) = − rx1

k +
2βx2

1y1

(a+x2
1)

2 . If tr2(J |E1) − 4 det(J |E1) ≥ 0 and tr(J |E1) < 0,

since det(J |E1) > 0, we deduce
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tr(J |E1)±
√
tr2(J |E1)− 4 det(J |E1) < 0. This proves the part (a).

Now we suppose that tr2(J |E1)− 4 det(J |E1) < 0, then the eigenvalues of J |E1 are

λ1,2 =
1

2

[
tr(J |E1)± i

√
4 det(J |E1)− tr2(J |E1)

]
,

if we set α0 = 2
π | arg(λ1,2)|, we deduce

| arg(λ1,2)| =


arctan(

√
4 det(J|E1 )−tr2(J|E1 )

tr(J|E1
) ), tr(J |E1) ≥ 0

π − arctan(

√
4 det(J|E1 )−tr2(J|E1 )

|tr(J|E1
)| ), tr(J |E1) < 0.

Therefore,

α0 =


2
π arctan

√
4 det(J|E1

)−tr2(J|E1
)

tr(J|E1 )
, tr(J |E1) ≥ 0

2
π (π − arctan

√
4 det(J|E1

)−tr2(J|E1
)

|tr(J|E1 )|
), tr(J |E1) < 0.

By using condition of Theorem 2.5, we can see if α < α0 then E1 becomes asymptot-
ically stable and E1 becomes unstable whenever α > α0. �

Remark 3.6. If

α =
( 2
π
arctan

√
4 det(J |E1)

tr2(J |E1)
− 1
)
tr(J|E1

)≥0
,

or

α =
(
2− 2

π
arctan

√
4 det(J |E1)

tr2(J |E1)
− 1
)
tr(J|E1 )<0

,

then E1 undergoes a Hopf bifurcation .

Remark 3.7. When 0 < α < 1, one can see that if tr2(J |E1)− 4 det(J |E1) < 0 and
tr(J |E1) < 0. So, we have a pair of complex conjugate root λ1,2 with negative real
parts. In this case, we also can deduce that E1 becomes asymptotically stable.

Proposition 3.8. A feasible E2 is of saddle type.

Proof. Since f ′(x∗) = 0 and f(x∗) < 0 then

g(x∗) = µβd− 2η2x3
∗ − 4ηdx2

∗ − 2d2x∗,

= η(−2ηx3
∗ − dx2

∗ + da),

< η
(
− 2ηx3

∗ − dx2
∗ − ηx3

∗ − dx2
∗ − (ηa− µβ)x∗

)
,

= ηx∗

(
− 3ηx2

∗ − 2dx∗ − (ηa− µβ)
)
= 0.

This implies g(x2) < g(x∗) < 0 for x∗ < x2, and consequently det(J |E2) < 0, hence
E2 is a saddle point. �
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4. Numerical simulation

We perform numerical simulations based on the fractional Adams-Bashforth-Moulton
method [2]. It was shown that for a differential equation

dαx(t)

dtα
= f(t, x(t)),

the fractional variant of the one-step Adams-Moulton method is given by (corrector
formula)

xn+1 =

⌈α⌉−1∑
i=0

tin+1

i!
x
(i)
0 +

hα

Γ(α+ 2)

n∑
i=0

ai,n+1f(ti, xi)+
hα

Γ(α+ 2)
f(tn+1, x

p
n+1),

in which ti = ih with some fixed h, and

ai,n+1 =

{
nα+1 − (n− α)(n+ 1)α, i = 0

(n− i+ 2)α+1 + (n− i)α+1 − 2(n− i+ 1)α+1, 1 ≤ i ≤ n.

We first need to compute the values xp
n+1, given by the generalize one-step Adams-

Bashforth method as a predictor formula

xp
n+1 =

⌈α⌉−1∑
i=0

tin+1

i!
x
(i)
0 +

hα

Γ(α+ 1)

n∑
i=0

bi,n+1f(ti, xi),

where bi,n+1 = (n+1− i)α− (n− i)α. This method is said to be of Predict, Evaluate,
Correct, Evaluate (PECE ) type, because in a concrete implementation, we would
start to calculate the predictor xp

n+1, then we evaluate f(tn+1, x
p
n+1). Next, we use

these quantities to calculate the corrector in xn+1 , and finally evaluate f(tn+1, xn+1).
This result is stored for future use in the next integration step.

To perform an error analysis of the presented method, we first assume that ti =
ih = iT

N with some N ∈ N, and we have the following theorem:

Proposition 4.1. [2] Let α > 0 and dαx(t)
dtα ∈ C2[0, T ] for some suitable T , then,

max
0≤i≤N

|x(ti)− xi| =

{
O(h2), α ≥ 1,

O(h1+α), α < 1,

Applying the corrector formula improves the accuracy of its input (the predictor)
by a factor of hα up to order of O(h2) for which a saturation is reached. Thus by
replacing the plain PECE structure by a P (EC)µE method ( additional corrector
iterations) a corrector iteration is of the form (corrector formula)

x
[l]
n+1 =

⌈α⌉−1∑
i=0

tin+1

i!
x
(i)
0 +

hα

Γ(α+ 2)

n∑
i=0

ai,n+1f(ti, xi)+
hα

Γ(α+ 2)
f(tn+1, x

[l−1]
n+1 ),

in which x
[l]
n+1 denotes the approximation after l corrector steps, x

[0]
n+1 = xp

n+1 is the

predictor, and xn+1 := x
[µ]
n+1 is the final approximation after µ corrector steps. The

following theorem provides an error analysis of this method.
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Proposition 4.2. [2] Assume dαx(t)
dtα ∈ C2[0, T ] for some suitable T , and α > 0.

Then, the approximation obtained by the P (EC)µE method described above satisfies

max
0≤i≤N

|x(ti)− xi| = O(hq),

where q = min{2, 1 + µα}.

Now by employing this method for 0 < α < 1 to the following system

dαx(t)

dtα
= F (t, x(t), y(t)),

dαy(t)

dtα
= G(t, x(t), y(t)),

we deduce that

x
[l]
n+1 = x0 +

hα

Γ(α+ 2)

n∑
i=0

ai,n+1F (ti, xi, yi, zi) +
hα

Γ(α+ 2)
F (tn+1, x

[l−1]
n+1 , y

[l−1]
n+1 , z

[l−1]
n+1 ),

y
[l]
n+1 = y0 +

hα

Γ(α+ 2)

n∑
i=0

ai,n+1G(ti, xi, yi, zi) +
hα

Γ(α+ 2)
G(tn+1, x

[l−1]
n+1 , y

[l−1]
n+1 , z

[l−1]
n+1 ),

x
[0]
n+1 = xp

n+1 = x0 +
hα

Γ(α+ 1)

n∑
i=0

bi,n+1F (ti, xi, yi, zi),

y
[0]
n+1 = ypn+1 = y0 +

hα

Γ(α+ 1)

n∑
i=0

bi,n+1G(ti, xi, yi, zi),

We now consider k (carrying capacity of the environment) as a bifurcation parameter
and consider the fix parameter values r = 0.05, a = 0.8, µ = 0.8, α = 0.98.
Our numerical simulations are plotted in Figure 1 for d = 0.24, η = 0.01, β = 0.6, k =
1.6 and Figure 2 for d = 0.015, η = 0.01, β = 0.4, k = 5 show that α has an essential
role on the stability behaviour of this system.

The analytical results can be exploited to examine the obtained numerical results.
We now consider the set of fixed parameters specified for Figure 1. For α = 0.98 we
have arg(λ|E1) = 1.5649 and απ

2 = 1.5394. Hence, |arg(λ|E1)| > απ
2 , which indicates

the condition of asymptotic stability of E1, based on the Theorem 3.5, holds. Further,
for α = 1 we have arg(λ|E1) = 1.5649 and απ

2 = 1.5708, then |arg(λ|E1)| < απ
2 . This

reveals that the condition of asymptotic stability of E1 is violated and E1 becomes
unstable. Hence, a stable limit cycle emerges around E1. These scenarios are depicted
in Figure 1 (right) and Figure 1 (left), respectively.
We next consider the set of fixed parameters specified for Figure 2. For α = 0.98 we
have arg(λ|E1) = 1.5695 and απ

2 = 1.5394, then |arg(λ|E1)| > απ
2 Hence, the condi-

tion of asymptotic stability of E1 holds. Also for α = 1 we have arg(λ|E1) = 1.5695
and απ

2 = 1.5708, then |arg(λ|E1)| < απ
2 . Hence, the condition of asymptotic stability

of E1 is violated and E1 becomes unstable. Hence, a stable limit cycle emerges around
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E1. These scenarios are depicted in Figure 2 (right) and Figure 2 (left), respectively.

5. Conclusion

We consider a planar fractional order prey-predator system with a nonmonotonic
functional response and anti-predator behaviour such that the adult prey can attack
vulnerable predators. We derive conditions for existence and asymptotic stability of
different equilibrium points. We also derive conditions under which a Hopf bifurcation
occurs and confirm these conditions by numerical evidences. Numerical simulations
reveal that α has an essential role on the stability and dynamics of this system.
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Figure 1. Phase space of system (1.2). (left) for α = 1, (right) for
α = 0.98.
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Figure 2. Phase space of system (1.2). (left) for α = 1, (right) for
α = 0.98.
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