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Abstract This paper is devoted to the study of establishing sufficient conditions for existence
and uniqueness of positive solution to a class of non-linear problems of fractional dif-

ferential equations. The boundary conditions involved Riemann-Liouville fractional
order derivative and integral. Further, the non-linear function f contain fractional
order derivative which produce extra complexity. Thank to classical fixed point the-
orems of nonlinear alternative of Leray-Schauder and Banach Contraction principle,

sufficient conditions are developed under which the proposed problem has at least
one solution. An example has been provided to illustrate the main results.
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1. Introduction

Fractional differential equations have many applications in various field of science
and technology. The important applications, we may observe in various scientific and
engineering disciplines like, physics, chemistry, biology, photoelasticity, control theory
and signal processing. Moreover, many applications are found in dynamics, aerody-
namics, electrostatics and biophysics, economics, polymers rheology, thermodynamics
and biomedical science, (see [9, 11, 14, 15, 19, 26, 25]). Due to the aforementioned
applications, the concerned subject has got much attention from the researchers of
mathematics, physics etc. The researchers has been studied by details its theory of
existences, numerical analysis and qualitative analysis. Plenty of work can be found
on the said area,for more detail, we refer the reader to [1, 2, 3, 13, 7, 6, 17, 24, 26]. It
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is to be noted that Caputo fractional derivatives plays a vital role in the modeling of
dynamical and physical problems as it has known physical interpretation for initial
and boundary value problems like classical differential equations. But on the other
hand derivative in Riemann-Liouville sense also plays important role in the area of
applied analysis. Existence theory for real world problems carried out by researchers
of mathematics for fractional differential equations with boundary conditions has been
explored and many research articles can be found regarding this topic, for detail (see
[8, 4, 18, 28, 10, 20, 27, 21, 22, 23]). In [5], Bai studied existence and multiplicity of
positive solutions to the following boundary value problem

Dαu(t) + a(t)f(t, u′(t)) = 0; 0 < t < 1, n− 1 ≤ α < n, n > 2,

u(t)|t=0 = u
′
(t)|t=0 = u

′′
(t)|t=0 = u

′′
(t)|t=1 = 0,

where f : [0, 1] × [0,∞) → (−∞,+∞) is nonlinear continuous function and Dα is
the Riemann-Liouvilli fractional derivative. In [16], Kosmative studied existence and
uniqueness of solutions to two-point boundary value problem for fractional differential
equations of the form

Dαu(t) + f(t, u(t), u
′
(t)) = 0; t ∈ (0, 1), 1 < α < 2,

u(t)|t=0 = u(t)|t=1 = 0,

where Dq is the Riemann-Liouvilli fractional derivative. In these cited papers, the
nonlinearity f involved the classical order derivative. The case where the nonlinearity
f explicitly depends of fractional order derivative is important theoretically as well
as in application point of view and requires more efforts to study existence results.
Goodrich [12], proved multiple solutions by using Schauder’s fixed point theorem for
fractional differential equation of the form

−Dαu(t) = f(t, u(t)); 0 < t < 1, n− 1 < α ≤ n, n ∈ N,

u(i)(t)|t=0 = Dβu(t)|t=1 = 0,

where 0 ≤ i ≤ n − 2, 1 ≤ β ≤ n − 2, α > 3. The nonlinear function f :
[0, 1]× [0,∞) → [0,∞) is continuous.
Motivated by the above mentioned work, this paper is concerned to establish condi-
tions for existence and uniqueness of solution to fractional order differential equation
with boundary condition provided by

Dαu(t) = f(t, u(t),Dpu(t)) = h(t); 2 < α < 3, 0 < p < 1,

I3−αu(t)|t=0 = Dα−2u(t)|t=0 = u(t)|t=1 = 0.
(1.1)

The required conditions are obtained by using classical fixed point theorem like non-
linear alternative of Leray-Schauder type and Banach contraction theorem. In last,
the paper is enriched by providing a suitable example to illustrate the main results.
The paper is organized: In second section, some preliminary results are provided
for obtaining the main results. In third Section, we provided ,main results in which
derivation of the Green’s function, integral formulations of the problem, necessary
and sufficient conditions for the existence and uniqueness of solutions by applying
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some classical fixed point theorems. Section 4 is devoted to illustrate the main results
by an example.

2. Preliminaries

We recall some basic definitions and known results from fractional calculus, func-
tional analysis, which can be found in [14, 26, 21, 28, 27].

Definition 2.1. The fractional integral of order q ∈ R+ of the function u : (0,∞) →
R is defined as

Iαu(t) =
1

Γ(α)

∫ t

0

(t− s)α−1u(s) ds,

where the integral on the right side is pointwise defined on (0,∞).

Definition 2.2. The Riemann-Liouville fractional order derivative of a function u on
the interval [a, b] is defined by

Dαu(t) =
1

Γ(n− α)
(
d

dt
)n

∫ t

a

(t− s)n−α−1u(s) ds,

where n = [α] + 1. It is to be noted that integral on the right hand side is pointwise
defined on (0,∞).

The following Lemmas are necessary in this paper.

Lemma 2.3. [17] The fractional order differential equation of order α > 0 of the
form

Dαu(t) = 0, n− 1 < α ≤ n,

has a unique solution of the form

u(t) = C1t
α−1 + C2t

α−2 + ...+ Cnt
α−n,where Ci ∈ R,

i = 1, 2, ..., n, and n = [α] + 1, where [α] represents integer part of α.

Lemma 2.4. [17] The following result holds for a fractional derivative and integral
of order α

IαDαu(t) = u(t) + C1t
α−1 + C2t

α−2 + ...+ Cnt
α−n,

where Ci ∈ R, i = 1, 2, . . . , n, and n = [α] + 1, where [α] represents integer part of α.

To establish, the main results, we need the following Theorems in this paper.

Theorem 2.5. (The nonlinear alternative of Leray-Schauder type [27]) Let
D be a closed convex subset of a Banach space X. Consider a relative open subset C
of D such that 0 ∈ C and let T : C → D be continuous and compact mapping. Then
either

(1) the mapping T has a fixed point in C; or
(2) there exist u ∈ ∂C and λ ∈ (0, 1) with u = λTu.
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Theorem 2.6. (The Banach contraction theorem [27]) Let D be a closed subset
of a Banach space X and T : D → D. Then T has a unique fixed point u in D and
for any initial value u0 ∈ D, the successive approximation converges to u0 if

∥Tu− T ū∥ ≤ k∥u− ū∥, forall u, ū ∈ D with 0 < k < 1.

3. Main results

Theorem 3.1. Let h(t) ∈ C[0, 1], then the boundary value problem

Dαu(t) = h(t), 2 < α < 3, t ∈ [0, 1],

I3−αu(t)|t=0 = Dα−2u(t)|t=0 = u(t)|t=1 = 0,
(3.1)

has a unique solution given by

u(t) =

∫ 1

0

G(t, s)h(s)ds,

where G(t, s)is the Green’s function given as

G(t, s) =
1

Γ(α)

 (t− s)α−1 − tα−1(1− s)α−1, 0 ≤ s ≤ t ≤ 1;

−tα−1(1− s)α−1, 0 ≤ t ≤ s ≤ 1.
.

Proof. Inview of Lemma(2.4), boundary value problem(3.1) is written as

u(t) = C1t
α−1 + C2t

α−2 + C3t
α−3 + Iαh(t). (3.2)

Now for boundary conditions, (3.2) implies that

I3−αu(t) = C1I3−αtα−1 + C2I3−αtα−2 + C3I3−αtα−3 + I3−αIαh(t)

= C1
Γ(α− 1 + 1)

Γ(3− α+ α− 1 + 1)
t3−α+α−1 + C2

Γ(α− 2 + 1)

Γ(3− α+ α− 2 + 1)
t3−α+α−2

+ C3
Γ(α− 3 + 1)

Γ(3− α+ α− 3 + 1)
t3−α+α−3 + I3h(t)

I3−αu(t) = C1
Γ(α)

Γ(3)
t2 + C2

Γ(α− 1)

Γ(2)
t+ C3

Γ(α− 2)

Γ(1)
+ I3h(t).

(3.3)

Inview of I3−αu(t)|t=0 = 0 and also we have I3h(t) → 0 as t → 0, in(3.3), we get
C3 = 0. Now for boundary conditions Dα−2u(t)|t=0=0 = 0, (3.2)implies that

Dα−2u(t) = Dα−2

[
C1t

α−1 + C2t
α−2 + Iαh(t)

]
= C1

Γ(α)

Γ(α− 1− α+ 2 + 1)
tα−1−α+2 + C2

Γ(α− 1)

Γ(α− 2− α+ 2 + 1)
tα−2−α+2 + I2h(t)

= C1
Γ(α)

Γ(2)
t+ C2

Γ(α− 1)

Γ(1)
+ I2h(t)

(3.4)
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which on application of Dα−2u(t)|t=0 = 0, and I2h(t) → 0 as t → 0, we get C2 = 0.
Hence (3.2) implies that

u(t) = C1t
α−1 + Iαh(t). (3.5)

Using u(t)|t=1 = 0 in (3.5), we get C1 = −Iαh(1). Thus (3.2) becomes

u(t) = −tα−1Iαh(1) + Iαh(t)

=
1

Γ(α)

t∫
0

(t− s)α−1h(s)ds− tα−1

Γ(α)

1∫
0

(1− s)α−1h(s)ds

=

1∫
0

G(t, s)h(s)ds.

Hence the BVP (1.1) is equivalent to the following integral equation

u(t) =

1∫
0

G(t, s)f(s, u(s),Dpu(s))ds. (3.6)

�

Lemma 3.2. The Green’s function G(t, s) defined in Theorem 3.1 satisfies the fol-
lowing inequality∫ 1

0

|G(t, s)|ds ≤ 2

Γ(α+ 1)
. (3.7)

Proof. Proof is easy, so we omit it. �

Assume that the following hold,

(A1) For any x, y, u, v ∈ R, there exists L > 0 such that

|f(t, u, v)− f(t, x, y)| ≤ L(|u− x|+ |v − y|);
(A2) f : I ×R2 → R is continuous;
(A3) There exists a0(t) ∈ L1[0, 1] such that |a0(t)| ≤ δ and b, c ≥ 0 with

|f(t, u, v)| ≤ a0(t) + b|u|ρ + c|v|θ,
where 0 < ρ < θ < 1; or

|f(t, u, v)| ≤ b|u|ρ + c|v|θ for ρ, θ ≥ 1, b, c > 0.

Throughout this paper, we use the following space defined by

X = {u(t)|u(t) ∈ C1[0, 1] and Dpu(t) ∈ C1[0, 1], 0 < p < 1}
∥u∥ = max

t∈[0,1]
|u(t)|+ max

t∈[0,1]
|Dpu(t)|,

then (X, ∥ · ∥) is Banach space. Let define an operator T : X → X by

Tu(t) =

∫ 1

0

G(t, s)f(s, u(s),Dpu(s))ds, t ∈ [0, 1]. (3.8)
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Theorem 3.3. Under the assumptions (A1) to (A3) BVP (1.1) has at least one
solution.

Proof. Let us define T : X → X by

Tu(t) =

1∫
0

G(t, s)f(s, u(s),Dpu(s))ds.

Define a closed set as

B = {u(t)|u ∈ X : ∥u∥ ≤ R, 0 ≤ t ≤ 1},where max
{
(3Ab)

1
3−ρ, (3Ac)

1
3−θ, 3k

}
≤ R,

where

A =
2α− p

αΓ(α− p+ 1)
+

2

Γ(α+ 1)

k = δ

[
2

Γ(α+ 1)
+

1

αΓ(α− p)
+

1

Γ(α− p+ 1)

]
.

For any u ∈ B and T : B → B, we have

|Tu(t)| =

∣∣∣∣∣∣
1∫

0

G(t, s)f(s, u(s),Dpu(s))ds

∣∣∣∣∣∣
≤

1∫
0

|G(t, s)|f(s, u(s),Dpu(s))|ds

≤
1∫

0

|G(t, s)|
(
|a0(s)|+ b|u(s)|ρ + c|Dpu(t)|θ

)
ds

≤
1∫

0

|G(t, s)|a0(s)|ds+
(
bRρ + cRθ

) 1∫
0

|G(t, s)|ds

≤ 2

Γ(α+ 1)

[
δ + bRρ + cRθ

]
.

(3.9)

Now from (3.6), we have

Dpu(t) = Dp
(
−Iαh(1)tα−1 + Iαh(t)

)
= −Iαh(1)Dptα−1 +DpIαh(t)

= −Iαh(1)
Γ(α)tα−1−p

Γ(α− p)
+ Iα−βh(t).
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Thus by applying operator T , we have

|DpTu(t)| =∣∣∣∣− tα−p−1

Γ(α− p)

1∫
0

(1− s)α−1f(s, u(s),Dpu(s))ds+
1

Γ(α− p)

t∫
0

(t− s)α−p−1f(s, u(s),Dpu(s))ds

∣∣∣∣
≤ 1

Γ(α− p)

{[ 1∫
0

(1− s)α−1

(
|a0(s)|+ bRρ + cRθ

)
ds

]

+

[ t∫
0

(t− s)α−p−1

(
|a0(s)|+ bRρ + cRθ

)
ds

]}

≤ δ

Γ(α− p)

[
1

α
+

1

α− p

]
+

2α− p

αΓ(α− p+ 1)

(
bRρ + cRθ

)
.

Which implies that

|DpTu(t)| ≤ δ

Γ(α− p)

[
1

α
+

1

α− p

]
+

2α− p

αΓ(α− p+ 1)

(
bRρ + cRθ

)
. (3.10)

Adding (3.9) and (3.10), using |a0(s)| ≤ δ, we obtain

|Tu(t)|+ |DpTu(t)| ≤ 2δ

Γ(α+ 1)
+

2(bRρ + cRθ)

Γ(α+ 1)
+

δ

Γ(α− p)

[
1

α
+

1

α− p

]
+

2α− p

αΓ(α− p+ 1)

(
bRρ + cRθ

)
≤ δ

[
2

Γ(α+ 1)
+

1

αΓ(α− p)
+

1

Γ(α− p+ 1)

]
+

[
2α− p

αΓ(α− p+ 1)
+

2

Γ(α+ 1)

](
bRρ + cRθ

)
which implies that ∥Tu∥ ≤ k + (bRρ + cRθ)A ≤ R

3
+

R

3
+

R

3
= R.

Also Tu(t) and DpTu(t) are continuous. Thus T : B → B is well defined and bounded.
Similarly using same argument for other condition of assumption (A3), we get

∥Tu∥ <
R

2
+

R

2
= R.

Now, we are going to show that T is completely continuous operator. Let τ ≤ t ∈ [0, 1],
then

|Tu(t)− Tu(τ)| =

∣∣∣∣∣∣
1∫

0

(G(t, s)−G(τ, s))f(s, u,Dpu))ds

∣∣∣∣∣∣
≤

1∫
0

|G(t, s)−G(τ, s)||f(s, u,Dpu)|ds. (3.11)
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Let c, d ∈ (τ, t) for 0 ≤ s ≤ t and by the application of Lagrange’s mean value
theorem, we proceed as

|G(t, s)−G(τ, s)| =
1

Γ(α)

[
(t− s)α−1 − (τ − s)α−1 + (1− s)α−1(τα−1 − tα−1)

]
≤ α− 1

Γ(α)

[
(c− s)α−2(t− τ)− (1− s)α−1dα−2(t− τ)

]
.

Similarly there exists e ∈ (t, τ) for 0 ≤ t ≤ s

(τα−1 − tα−1) ≤ (α− 1)eα−2(τ − t)(1− s)α−1.

Since α ≤ 3, therefore using α− 1 ≤ 2, then (3.11) implies that

|Tu(τ)− Tu(t)|

≤ (t− τ)

Γ(α)

1∫
0

2{(c− s)α−1 − dα−2(1− s)α−1 − eα−2(1− s)α−1}(a0(s) + bRρ + cRθ)ds.

(3.12)

Let
Gc,d,e(s) = 2{(c− s)α−2 − (1− s)α−1dα−2 − eα−2(1− s)α−1}.

Then (3.12) becomes

|Tu(t)− Tu(τ)| ≤ (t− τ)

Γ(α)

1∫
0

Gc,d,e(s)(a0(s) + bRρ + cRθ)ds. (3.13)

Similarly one has

|DpTu(t)−DpTu(τ)| ≤ (t− τ)

Γ(α)

1∫
0

Gc,d,e(s)(a0(s) + bRρ + cRθ)ds (3.14)

Now from(3.13) and (3.14), we have

∥Tu(t)−Tu(τ)∥ ≤ (t− τ)

Γ(α)

 1∫
0

Gc,d,e(s) +Gc,d,e(s)

 [(a0(s)+ bRρ+ cRθ)ds].

(3.15)

Now t → τ in (3.15) gives
∥Tu(t)− Tu(τ)∥ → 0.

Thus T is equcontinous, as T is uniformly continuous on [0, 1]. Thus T (B) is equcon-
tinuous set and also is bounded. Moreover, T (B) ⊆ B. It follows that T is completely
continuous.
Thus T is at least one fixed point by using nonlinear alternative of Leray-Schauder the-
orem 2.5, which is the corresponding solution of (1.1). This completes the proof. �

Theorem 3.4. If (A1), (A2) hold and LΩ =
(

2
Γ(α+1) +

1
Γ(α−p+1)

)
L < 1. Then T has

a unique fixed point.
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Proof. Let u(t), v(t) ∈ C1[0, 1], then we have

|Tu(t)− Tv(t)| ≤
1∫

0

|G(t, s)||f(t, u,Dpu)− f(t, v,Dpv)|ds

≤ max

1∫
0

(
(t− s)α−1 − tα−1(1− s)α−1

Γ(α)

)
L(|u− v|+ |Dpu−Dpv|)ds.

Thus ∥Tu− Tv∥ ≤ 2L

Γ(α+ 1)
∥u− v∥.

(3.16)

Similarly

∥DpTu−DpTv∥ ≤ L

Γ(α− p+ 1)
∥u− v∥. (3.17)

Thus from (3.16) and (3.17), we have

∥Tu− Tv∥ ≤
(

2L

Γ(α+ 1)
+

L

Γ(α− p+ 1)

)
∥u− v∥ = LΩ∥u− v∥.

Thus by applying Theorem 2.6, T has a unique fixed point which is the unique positive
solution of BVP (1.1). �

4. Example

Example 1.D 5
2u(t) =

t

4
+

sin
1
2 |u(t)|
32

+
cos |D 1

2u(t)|
32

, t ∈ [0, 1],

I 1
2u(0) = D 1

2u(0) = u(1) = 0.

(4.1)

From (4.1), we see that α = 5
2 and p = 1

2 , where

f(t, u,Dpu) =
t

4
+

sin
1
2 |u(t)|
32

+
cos

1
2 |D 1

2u(t)|
32

|f(t, u,Dpu)| ≤ 1

4
+

1

32
|u| 12 +

1

32
|D 1

2u(t)| 12 ,

clearly a0 = 1
4 , b = 1

32 , c = 1
32 , θ = ρ = 1

2 , u, v ∈ R, then

|f(t, u,Dpu)− f(t, v,Dpv)| ≤ 1

32
(|u− v|+ |Dpu−Dpv|) , where L =

1

32
.

As assumptions (A1) to (A3) hold, so BVP (4.1) has at least one solution. While

Ω =
2

Γ( 52 + 1)
+

1

Γ( 52 − 1
2 + 1)

=
2

Γ( 72 )
+

1

Γ(3)
=

2
5
2 .

3
2 .

1
2Γ(π)

+
1

2
= 1.10180.

From which, we have LΩ = 1.10180
32 = 0.034431 < 1. Hence BVP (4.1) has a unique

solution.
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5. Conclusion

By the use of classical fixed point theorem of nonlinear alternative of Leray-
Schauder type and Banach concatenation theorem, we have developed some necessary
and sufficient conditions for the existence of at least one positive solutions to a class of
nonlinear fractional differential equations. Where the nonlinearity of the problem ex-
plicitly depends on the fractional order derivative which produce an extra complexity
and such type of problems occur in applications in real world.
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