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Abstract This paper deals with a delayed ratio-dependent functional response predator-prey
model with a threshold harvesting policy. We study the equilibria of the system be-

fore and after the threshold. We show that the threshold harvesting can improve the
undesirable behavior such as nonexistence of interior equilibria. The global analysis
of the model as well as boundedness and permanence properties are examined too.
Then we analyze the effect of time delay on the stabilization of the equilibria, i.e.,

we study whether time delay could change the stability of a co-existence point from
an unstable mood to a stable one. The system undergoes a Hopf bifurcation when
it passes a critical time delay. Finally, some numerical simulations are performed to
support our analytic results.
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1. Introduction

Mathematical model for predator-prey interaction is studied originally by Lotka
[17] and Volterra [22] as{

ẋ = γx− αxy,
ẏ = βxy − δy,

(1.1)

where x and y are the numbers of prey and predator, respectively. In this classical
model the positive parameters γ, α, β, and δ stand for growth rate of prey, predation
rate, conversion rate to change prey biomass into predator reproduction and death
rate of predator, respectively.
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More generally the predator-prey model is the following system{
ẋ = rx(1− x

k )− F (x, y),
ẏ = β F (x, y)− δy.

(1.2)

The positive parameters r, k, β and δ represent the prey intrinsic growth rate, the
environmental carrying capacity, conversion rate to change prey biomass into predator
reproduction and predator’s death rate, respectively. The function F (x, y) describes
predation and is called the functional response.

Traditionally, F (x, y) is assumed to be a function of the prey population x, that
is, F (x, y) = F (x), where F (x) is a Holling type (II) function [18]. It is shown that
a predator-prey model with the prey-dependent functional response, may expose the
so-called paradox of enrichment or the biological control paradox [10, 20, 2, 9].

The following ratio-dependent functional response predator-prey model has been
suggested by Arditi and Ginzburg in [3]

ẋ = rx(1− x
k )−

axy
abx+y ,

ẏ = y
(
−d+ ηax

abx+y

)
.

(1.3)

Here a > 0 and b > 0 are predator’s attack rate and handling time, respectively.
System (1.3) exposes neither the paradox of enrichment nor the biological control

paradox [4, 11, 12]. One can simplify (1.3), by rescaling

t → rt, x → x/k y → y/abk.

Therefore the ratio-dependent functional response predator-prey model is written as
ẋ = x(1− x)− αxy

x+y ,

ẏ = −δy + βxy
x+y ,

(1.4)

where α = a
r , β = η

br , δ = d
r .

Moreover, in point of view of human needs such as in fishery, forestry and wildlife
management, the harvesting of populations is an interesting subject. Constant, linear
and quadratic harvesting have been considered so far, for example see, [16, 24, 25, 21,
19].

Another harvesting policy is the threshold harvesting. It works as follows:
When the population is above of a certain level (threshold) T , the harvesting

occurs; when the population falls below that level, the harvesting stops. The policy
was first studied by Collie and Spencer [6], and additional analysis has been done
since then [1, 14, 13]. Classically, such harvesting function for a population model is
defined as a discontinuous function

ϕ(z) =

{
0 z ≤ T,
ϵ z > T,

(1.5)

where z = x or z = y. The discontinuous function (1.5) is impractical in real world,
because it would be difficult for managers to harvest immediately, at a rate ϵ, once
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Figure 1. Graph of the continuous threshold harvesting function.

z > T . So the continuous threshold function proposed as the following

H(z) =

{
0 z ≤ T,
h(z−T )
h+z−T z > T,

(1.6)

for z = x or z = y [15, 23]. In (1.6), T is the threshold value that determines
when harvesting starts or stops and once the population passes T , then harvesting
starts and increases smoothly to a limit value h, so the parameter h is the rate of
harvesting limit. Because of the continuity of H(z), the managers can adjust the rate
of harvesting, more easily, see FIGURE 1.

On the other hand, once the predation occurs, the next generation of predator is
not reproduced immediately. So the system (1.4) is impractical in real world.

In this paper we consider a ratio-dependent functional response predator-prey
model with a continuous threshold harvesting and with a discrete time delay. In
the model, the delay represents the time that takes to predator for consuming prey
and to reproduce its next generation. We show that the feedback of the predator
density (represented by time delay), might cause the oscillatory behavior.

The subject of this paper is to study the combined effects of harvesting and delay
on the dynamics of a ratio-dependent predator-prey model. The reason for choosing
this model is that, since we know the dynamics of the system, it will be better for
us to determine the effects of delay and harvesting. Furthermore, to the best of our
knowledge this is the first time that the global analysis of a delayed ratio-dependent
functional response model is studied.

The paper is organized as follows. In Section 2, we determine the equilibria of
the harvested and unharvested models. Some global analysis of the model, as well as
boundedness and permanence is given too. In Section 3, we study the local stability
of the equilibria, without time delay. In Section 4, we study the effect of the time
delay in the stability of the co-existence equilibrium. We will show that the system
undergoes a Hopf bifurcation when it passes a critical time delay. Some numerical
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simulations have been done in Section 5, to support the analytic results. Conclusions
are made in Section 6.

2. Equilibria of the ratio-dependent functional response model

In this section we consider the following delayed ratio-dependent functional re-
sponse predator-prey model with a threshold harvesting policy

ẋ = x(1− x)− αxy
x+y ,

ẏ = y
(
−δ + βx(t−τ)

x(t−τ)+y(t−τ)

)
−H(y),

(2.1)

where

H(y) =

{
0 y ≤ T,
h(y−T )
h+y−T y > T,

(2.2)

and the initial conditions

x0(θ) = ϕ1(θ) ≥ 0, y0(θ) = ϕ2(θ) ≥ 0, θ ∈ [−τ, 0],
x(0) > 0, y(0) > 0,

where (ϕ1, ϕ2) ∈ C([τ, 0],R2
+) and xt(θ) = x(t+ θ), yt(θ) = y(t+ θ).

In this model, the delay represents the time due to converting prey biomass into
predator biomass. The function H(y) is the predator threshold harvesting.

Denote Nx, Ny respectively, the prey and predator nullclines. That is

Nx = {(x, y) : x = 0} ∪
{
(x, y) : y =

x(x− 1)

1− α− x

}
, (2.3)

Ny =


{(x, y) : y = 0} ∪

{
(x, y) : x = δy

β−δ

}
y ≤ T,

{
(x, y) : x = δ(h+y−T )y2+h(y−T )y

(β−δ)(h+y−T )y−h(y−T )

}
y > T.

(2.4)

As we are interested in biologically feasible equilibria, we only consider the points in
Nx ∩ Ny ∩ R2

+, where R2
+ is the first quadrant. The system (2.1) has two boundary

equilibria O = (0, 0), E = (1, 0). Furthermore, when y ≤ T , Nx ∩ Ny has another
common element E∗ = (x∗, y∗) given by

x∗ = β−αβ+αδ
β ,

y∗ = β−δ
δ x∗ = x∗(x∗−1)

1−α−x∗ = β2−αβ2+2αδβ−βδ−αδ2

βδ .
(2.5)

Thus the system has an interior equilibrium E∗ in the first quadrant when

β − αβ + αδ > 0, β > δ. (2.6)

Note that if 0 < α < 1, then the condition β > δ implies the condition β−αβ+αδ >
0.

Remark 2.1. The condition β > δ means that in the case y < T , to grant a coexis-
tence equilibrium, the predator growth parameter β must be sufficiently larger than
the predator death parameter δ.
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In the next proposition, we show that for y > T , the system (2.1) has no prey-free
equilibrium.

Proposition 2.2. If y > T , then Ny ∩ {(x, y) : x = 0} = ∅.

Proof. Assume that y > T and (x, y) ∈ Ny ∩ {(x, y) : x = 0}. By (2.4) we have

δ(h+ y − T )y + h(y − T ) = 0. (2.7)

The solutions of (2.7) are

y =
−(δh− δT + h)±

√
(δh− δT + h)2 + 4δhT

2δ
, (2.8)

and only the following solution is positive

y =
−(δh− δT + h) +

√
(δh− δT + h)2 + 4δhT

2δ
.

By the following relations it implies that y < T, a contradiction with the hypothesis.

0 > −4δ2Th
⇐⇒ (δT + δh+ h)2 > (δh− δT + h)2 + 4δhT

⇐⇒ δT + δh+ h >
√
(δh− δT + h)2 + 4δhT

⇐⇒ 2δT > −(δh− δT + h) +
√
(δh− δT + h)2 + 4δhT

⇐⇒ T >
−(δh−δT+h)+

√
(δh−δT+h)2+4δhT

2δ
⇐⇒ T > y.

Thus the system has no prey-free equilibrium in the first quadrant. �

By Proposition 2.2, if y > T , the interior equilibrium of the system is the solution
of the system

y = x(x−1)
1−α−x ,

x = δ(h+y−T )y2+h(y−T )y
(β−δ)(h+y−T )y−h(y−T ) .

(2.9)

From the expression y = x(x−1)
1−α−x , we know that the points in (2.9) exist in R2

+, if

1 − α < x < 1. By substituting y = x(x−1)
1−α−x into the expression in Ny, we find that

points in (2.9) satisfy the equation

G(x) := βx5 + (αβ + βT − 3β − βh− αδ)x4+
(hα− 2βhα+ 2βαT + δhα− δαT + 3β + 3βh− 3βT
+2αδ − 2αβ)x3+
(−β − βhα2 + 4βhα− αδ − 3βh+ 2δαT − δα2T + βα2T
+αβ + hαT + δhα2 + 3βT − 2δhα− 4βαT − 2hα+ hα2)x2+
(2βαT − δhα2 + hα+ δα2T − 2βhα− βT − βα2T + δhα
+2hα2T − δαT − hα2 − 2hαT + βh+ βhα2)x+
hαT − 2hα2T + hα3T = 0.

(2.10)
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By the intermediate theorem G(x) has at least one root. Denote by x∗∗, the positive
solution of the Eq. (2.10) (if there exists anyone), and let

y∗∗ =
x∗∗(x∗∗ − 1)

1− α− x∗∗ . (2.11)

If α ≥ 1 then y∗∗ = x∗∗(x∗∗−1)
1−α−x∗∗ < 1 and we should have T < 1. In this case if

1− T −
√
(T − 1)2 − 4T (1− α)

2
< x∗∗ <

1− T +
√
(T − 1)2 − 4T (1− α)

2
,

then y∗∗ > T . In the case α < 1 and 1− α− x∗∗ ≥ 0, if

x∗∗ >
1− T +

√
(T − 1)2 − 4T (1− α)

2
,

then y∗∗ > T . In the case α < 1 and 1− α− x∗∗ < 0, if

0 < x∗∗ <
1− T +

√
(T − 1)2 − 4(T − Tα)

2
,

then y∗∗ > T . Finally if α = 1 and 0 < x∗∗ < 1+
√
1+4T
2 , then y∗∗ > T .

The following theorem summarized the above discussions. Note that the theorem,
nevertheless, does not reveal under which conditions in harvested model an interior
equilibrium appear. We rely on numerical computation to answer this question. In-
deed with a numerical simulation in Section 5, we give examples at which the threshold
harvesting policy can prevent the extinction of both species, prey and predator. Fur-
thermore if β > δ and β − αβ + αδ > 0, then the unharvested model has an interior
equilibrium (x∗, y∗). If y∗ > T , by the last claim of the theorem the harvested model
has an interior equilibrium too.

Theorem 2.3. The boundary equilibria of the system (2.1) in the first quadrant are
the co-extinction point O = (0, 0) and the predator-free point E = (1, 0). If β > δ
and β − αβ + αδ > 0, then the unharvested model has a co-existence equilibrium
E∗ = (x∗, y∗) defined by (2.5). Furthermore if y∗ ≤ T , then E∗ is an equilibrium of
the harvested model too. If y∗ > T and (x∗∗, y∗∗) ∈ R2

+, then the harvested model has
a co-existence equilibrium E∗∗ = (x∗∗, y∗∗) defined by (2.9) and we have x∗∗ > x∗,
T < y∗∗ < y∗.

Proof. By the above discussions, we only prove the last claim, which is true by the
following lemmas.

Lemma 2.4. Let x̂ = δy
β−δ , x̃ = δ(h+y−T )y2+h(y−T )y

(β−δ)(h+y−T )y−h(y−T ) for a fixed y ≥ 0. If y > T ,

then x̃ > x̂.

Proof. The following relations prove the result.

0 < hy(β − δ)(y − T ) ⇔
δ(β − δ)(h+ y − T )y2 − δhy(y − T ) <
δ(β − δ)(h+ y − T )y2 + (β − δ)hy(y − T ) ⇔
δy
β−δ < δ(h+y−T )y2+h(y−T )y

(β−δ)(h+y−T )y−h(y−T ) ⇔

x̂ < x̃.
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�

Comparing the harvested and unharvested systems, since H(y) > 0 in [T,+∞) one
can easily prove the following lemma.

Lemma 2.5. Let y∗, y∗∗ be the second components of the positive equilibrium of the
harvested and unharvested model respectively. If y∗ > T , then y∗∗ < y∗.

�

In other word, while the unharvested coexistence equilibrium is stable, the thresh-
old harvesting policy can never increase both populations. In this case coexistence
equilibrium have a larger prey population and a lower predator population. With a
numerical simulation in Section 5, we give examples at which the threshold harvesting
policy can prevent the extinction of both species, prey and predator.

In the rest of this section we study the global qualitative behavior of system (2.1).

Lemma 2.6. The first quadrant is invariant for system (2.1).

Proof. Suppose that there exists A > 0, such that for all t ∈ [0, A), we have x(t) > 0,
y(t) > 0 and either x(A) = 0 or y(A) = 0. Consider the following initial value problem

ẋ = x(1− x)− αxỹ
x+ỹ ,

˙̃y = ỹ
(
−δ + βx(t−τ)

x(t−τ)+ỹ(t−τ) −
h

h+ỹ−T

)
,

ỹ(0) = y(0) > 0,

(2.12)

For any t ∈ [−τ,A), the following integral equation follows from (2.12){
x(t) = x(0) exp

∫ t

0
(1− x(s)− αỹ(s)

x(s)+ỹ(s) )ds,

ỹ(t) = y(0) exp
∫ t

0

(
−δ + βx(s−τ)

x(s−τ)+ỹ(s−τ) −
h

h+ỹ−T

)
ds.

(2.13)

From the continuity of x(t) and ỹ(t) on [−τ,A) one can find a positive number M ,
such that for all t ∈ [τ, A),{

x(t) = x(0) exp
∫ t

0
(1− x(s)− αỹ(s)

x(s)+ỹ(s) )ds ≥ x(0)e−TM ,

ỹ(t) = y(0) exp
∫ t

0

(
−δ + βx(s−τ)

x(s−τ)+ỹ(s−τ) −
h

h+ỹ−T

)
ds ≥ y(0)e−TM .

(2.14)

By standard comparison principal, we have y(t) ≥ ỹ(t) for all t ∈ [0,+∞). So for all
t ∈ [τ, A), we have{

x(t) = x(0) exp
∫ t

0
(1− x(s)− αy(s)

x(s)+y(s) )ds ≥ x(0)e−TM ,

y(t) ≥ y(0) exp
∫ t

0

(
−δ + βx(s−τ)

x(s−τ)+ỹ(s−τ) −
h

h+ỹ−T

)
ds ≥ y(0)e−TM .

(2.15)

Taking t → A, one get x(A) > 0 and y(A) > 0, a contradiction. Thus the first
quadrant is invariant for the system (2.1). �
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Lemma 2.7. Let (x(t), y(t)) be the solution of (2.1). If β > δ, then

lim sup
t→+∞

x(t) ≤ 1,

lim sup
t→+∞

y(t) ≤ (
β − δ

δ
)eβτ .

Proof. From the first equation of system (2.1), one get that for all t ∈ [0,∞)

ẋ(t) ≤ x(t)(1− x(t)).

Consider the following initial value problem{
˙̃x(t) = x̃(t)(1− x̃(t)),
x̃(0) = x(0) > 0.

(2.16)

By standard comparison principal, we have x(t) ≤ x̃(t) for all t ∈ [0,+∞). Thus

lim sup
t→+∞

x(t) ≤ lim sup
t→+∞

x̃(t) = 1.

From the second equation, we have

ẏ(t) ≤ βy(t). (2.17)

Thus

y(t) ≤ y(0)eβt.

Thus for t > τ , integrating (2.17) on [t− τ, t], we obtain

y(t− τ) ≥ y(t)eβτ .

Note that there exists A > 0 such that for all t > A, x(t) < 1. Hence for t > A+ τ ,

ẏ(t) ≤ y(t)

(
β

1 + ye−βτ
− δ

)
−H(y) ≤ y(t)

(
β

1 + ye−βτ
− δ

)
.

A standard comparison argument shows that

lim sup
t→+∞

y(t) <

(
β − δ

δ

)
eβτ .

Hence if β > δ, then the system is bounded. �

Lemma 2.8. If β − δ − hM
h+M−T > 0 and α < 1, then the system (2.1) has a positive

equilibrium, where

M = max{lim sup
t→+∞

x(t), lim sup
t→+∞

y(t)}.

Proof. One can show easily that if α < 1, then

ẋ > x(1− x− α),

which implies that

lim inf
t→+∞

x(t) ≥ (1− α).
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Therefore for any ν > 1, there exists a positive Tν such that for t > Tν , x(t) >
1−α
ν

and y(t) < νM . Thus for t > Tν + τ , we have

ẏ(t) ≥ y(t)

(
β 1−α

ν
1−α
ν + νM

− δ − νhM

h+ νM − T

)
.

Hence

ẏ(t) > y(t)

(
−δ − νhM

h+ νM − T

)
,

which implies that for t > Tν + τ ,

y(t− τ) > y(t)e(δ+
νhM

h+νM−T )τ .

Thus for t > Tν + τ

ẏ(t) ≥ y(t)

(
β 1−α

ν

1−α
ν + y(t)e(δ+

νhM
h+νM−T )

− δ − νhM

h+ νM − T

)
.

which yields

lim inf
t→+∞

y(t) ≥

(
β 1−α

ν

δ + hM
h+M−T

− 1− α

ν

)
e(δ+

νhM
h+νM−T )τ .

As ν → 1, we get

lim inf
t→+∞

y(t) ≥

(
β − δ − hM

h+M−T

)
(1− α)

δ + hM
h+M−T

e−(δ+
hM

h+M−T )τ > 0.

�
Recall that system (2.1) is said to be not persistent, if

min(lim inf
t→+∞

x(t), lim inf
t→+∞

y(t)) = 0,

for some of its positive solutions.

Lemma 2.9. If α > 1 + δ, then the system (2.1) is not persistent.

Proof. If α > 1 + δ, then there exists an ϵ > 0 such that
α

1 + ϵ
= 1 + δ.

Let x(0)
y(0) < ϵ, we claim that for all t > 0, x(t)

y(t) < ϵ. Otherwise, there exists t0 > 0 such

that x(t0)
y(t0)

= ϵ and for t ∈ [0, t0),
x(t)
y(t) < ϵ. Then for t ∈ [0, t0), we have

ẋ(t) ≤ x(t)

(
1− α

1 + ϵ

)
,

from which we obtain
x(t) ≤ x(0)e(1−

α
1+ϵ ) = x(0)e−δt.

Thus x(t) ≤ x(0)e−δt for all t ≥ 0. That is limt→+∞ x(t) = 0. Similarly,

ẏ(t) ≥ −y(t)

(
δ +

h

h+ y − T

)
,
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from which we obtain
y(t) ≥ y(0)e−δt.

Thus for t ∈ [0, t0],

x(t)

y(t)
≤ x(0)e(1−

α
1+ϵ )

y(0)e−δt
=

x(0)

y(0)
< ϵ.

Hence the system is not persistent if α > 1 + δ. �

Theorem 2.10. If α > 1 + δ and β < αδ
α−1−δ , then there exists a positive solution

(x(t), y(t)) such that limt→+∞ (x(t), y(t)) = (0, 0).

Proof. If α > 1 + δ, then limt→+∞ x(t) = 0 and for t ≥ 0,

x(t)

y(t)
≤ α

1 + δ
− 1,

provided that
x(0)

y(0)
≤ α

1 + δ
− 1.

Hence for t ≥ τ,

ẏ(t) ≤ y(t)

(
β

1 + 1+δ
α−1−δ

− δ

)
,

which implies
lim

t→+∞
y(t) = 0,

if β < αδ
α−1−δ . �

One concludes that under the assumption α > 1+δ, system (2.1) may have positive
steady state. This shows that system (2.1) can have both positive steady state and
positive solutions that tend to the origin.

3. Stability of the equilibria of the model without time delay

In this section, we study the local behavior of the model around its equilibria.
The general Jacobian matrix of system (2.1) without delay around an arbitrary point
(x, y) equals

J =

 1− 2x− αy2

(x+y)2 − αx2

(x+y)2

βy2

(x+y)2 −δ + βx2

(x+y)2 − dH(y)
dy

 , (3.1)

where

dH(y)

dy
=

{
0 0 < y ≤ T,

h2

(h+y−T )2 y > T.

Here, we shall point out, although (0, 0) is defined for system (2.1), it cannot be
linearized at. So, local stability of (0, 0) can not be studied. Indeed, this singularity
at the origin, while causes much difficulty in our analysis of the system, contributes
significantly to the richness of dynamics of the model. A complete parametric analysis
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of stability properties and dynamic around the complicated equilibrium (0, 0) for
unharvested model is done in [5]. Since T > 0, the results of [5] are valid for harvested
model too.

From the expression (3.1) the following result can be proved immediately.

Theorem 3.1. At the point E = (1, 0), the trace and determinant of (3.1) are
Tr(J)(1,0) = −1− δ + β and Det(J)(1,0) = δ − β. Therefore

(1) if δ − β < 0 then E is a saddle;
(2) if δ − β > 0 then E is a stable node;
(3) if δ − β = 0 then E remains a stable node.

Now we study the linearized system at the interior equilibria E∗ = (x∗, y∗), E∗∗ =
(x∗∗, y∗∗).

Theorem 3.2. Let

M =
(β − δ)(−αδβ2 + αδ2β + β2δ)

β3
,

N =
−β2 + α(β2 − δ2)− βδ(β − δ)

β2
.

If y∗ ≤ T , then we have

(1) if M < 0, then E∗ is a saddle;
(2) if M > 0 and N < 0, then E∗ is a stable node or focus;
(3) if M > 0 and N > 0, then E∗ is an unstable node or focus.

Proof. The Jacobian matrix of system (2.1) at E∗ is

J =


−β2+α(β2−δ2)

β2 −αδ2

β2

(β−δ)2

β
δ(δ−β)

β

 .

The associated characteristic equation is

λ2 −Nλ+M = 0.

Thus the eigenvalues of the Jacobian matrix are

λ1,2 =
N ±

√
N2 − 4M

2
,

and the result is obtained immediately. �
Remark 3.3. By Eq. (2.6), if the interior equilibrium E∗ exists, then M is positive.
Thus the coexistence equilibrium E∗ cannot be a saddle when it is biologically feasible.

Note that at the equilibrium (x∗∗, y∗∗) the trace and the determinant of the Jaco-
bian matrix equals

Tr(J) = C − B2

α − δ + βA2

α2 − ϕ,

Det(J) = C( β
α2A

2 − ϕ− δ) + 1
αB

2(δ + ϕ),

where ϕ = h2

h−T− x∗∗B
A

, A = 1− α− x∗∗, B = x∗∗ − 1, C = 1− 2x∗∗.
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Theorem 3.4. By the above mentioned notations we have

(1) if C − 1
αB

2 > βCA2

α2(ϕ+δ) , then E∗∗ is a saddle point;

(2) if C − 1
αB

2 < βCA2

α2(ϕ+δ) and C − 1
αB

2 < δ+ϕ− βA2

α2 , then E∗∗ is a stable node

or focus;

(3) if δ + ϕ− βA2

α2 < C − 1
αB

2 < βCA2

α2(ϕ+δ) , then E∗∗ is a unstable node or focus.

4. Stabilization effect of the delay

In this section, we study the effect of time delay on the stability of the co-existence
equilibrium of the system. The linearized system at the equilibrium (x0, y0) equals{

u
′
(t) = a11u(t) + a12v(t),

v
′
(t) = a21u(t− τ) + a22v(t− τ)−

(
δ + dH(y)

dy

)
v(t),

(4.1)

where u(t) = x(t)− x0, v(t) = y(t)− y0,

a11 = 1− 2x0 −
αy20

(x0 + y0)2
, a12 = − αx2

0

(x0 + y0)2
,

a21 =
βy20

(x0 + y0)2
, a22 =

βx2
0

(x0 + y0)2
.

Denote system (4.1) by

Ẋ(t) = A0X(t) +A1X(t− τ), (4.2)

where

A0 =

[
a11 a12
0 −δ − dH(y)

d(y)

]
,

and

A1 =

[
0 0
a21 a22

]
,

and X(t) = [x(t), y(t)]t. The characteristic equation of (4.1) is

λ2 +Aλ+B + (Cλ+D)e−λτ = 0, (4.3)

where

A = −a11 +

(
δ +

dH(y)

dy

)
, B = −a11

(
δ +

dH(y)

dy

)
,

C = −a22, D = a11a22 − a12a21.

When τ = 0, Eq. (4.3) becomes

λ2 + (A+ C)λ+ (B +D). (4.4)

All roots of Eq. (4.4) have negative real parts if and only if

(C1): A+ C > 0,
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(C2): B +D > 0.
Recall that the equilibrium (x0, y0) is called absolutely stable if it is asymp-

totically stable for all delays τ ≥ 0, and is called conditionally stable if it is
asymptotically stable for τ in some intervals, but not necessarily for all delays
τ ≥ 0.

Lemma 4.1. [7] System (4.2) is absolutely stable if and only if
(1) Reλ(A0 +A1) < 0;
(2) det[iωI −A0 −A1e

−iωτ ] ̸= 0 for all ω > 0.

By the first assumption of above lemma, system (4.2) with τ = 0 is asymp-
totically stable, while assumption (2) ensures that iω is not a root of Eq. (4.3).
Thus, roughly speaking, Lemma 4.1 says that the delayed system (4.2) is ab-
solutely stable if and only if the corresponding ODE system is asymptotically
stable and the characteristic Eq. (4.3) has no purely imaginary roots. Lemma
4.1 will be used to study stability and bifurcation in various delayed systems.
The main idea is as follows. If assumption (2) does not hold, that is, if the
characteristic Eq. (4.3) has a pair of purely imaginary roots, say ±iω0 then
system (4.2) is not absolutely stable but can be conditionally stable. Suppose
ω0 is achieved when τ reaches a value τ0. When τ < τ0 the real parts of all
roots of the characteristic Eq. (4.3) still remain negative and system (4.2) is
conditionally stable. When τ = τ0, the characteristic Eq. (4.3) has a pair of
purely imaginary roots ±iω0 and system (4.2) loses its stability. By Rouchés
theorem [8] and continuity, if the transversality condition holds at τ = τ0

then when τ > τ0 the characteristic Eq. (4.3) will have at least one root
with positive real part and system (4.2) becomes unstable. Moreover, Hopf
bifurcation occurs, that is, a family of periodic solutions bifurcates from the
steady state as τ passes through the critical value τ0.

Let λ = iω, ω > 0 be the root of the characteristic equation. Then we have

−Cω sin τω −D cos τω = −ω2 +B, (4.5)

−Cω cos τω +D sin τω = Aω. (4.6)

From this it follows that

ω4 − (C2 −A2 + 2B)ω2 +B2 −D2 = 0. (4.7)

Eq. (4.7) has two roots

ω± =
(C2 −A2 + 2B)±

√
(C2 −A2 + 2B)2 − 4(B2 −D2)

2
.

If
(C3): C2 −A2 + 2B < 0, B2 −D2 > 0 or C2 −A2 + 2B < 4(B2 −D2),

then none of ω+ and ω− is positive. That is Eq. (4.7) does not have positive
roots. Therefore characteristic Eq. (4.3) does not have purely imaginary roots.
Since (C1) and (C2) ensure that all roots of Eq. (4.4) have negative real parts,
by Rouché’s theorem it follows that the roots of Eq. (4.3) have negative real
roots for all τ ≥ 0.
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On the other hand if
(C4): B2 −D2 < 0 or C2 −A2 + 2B > 0 and (C2 −A2 + 2B)2 = 4(B2 −D2),

then Eq. (4.7) has a positive root ω+. If
(C5): B2 −D2 > 0, C2 −A2 + 2B > 0 and (C2 −A2 + 2B)2 > 4(B2 −D2),

then Eq. (4.7) has two positive root ω±. In both cases the characteristic
Eq. (4.3) has purely imaginary roots when τ takes certain values.

From Eq. (4.5) and (4.6) the corresponding critical time delay is given by

τ± =
1

ω±
arccos

{
D(ω2

± −B)−ACω2
±

C2ω2
± +D2

}
+

2jπ

ω±
, j = 0, 1, 2, . . . . (4.8)

The above analysis can be summarized into following lemma.

Lemma 4.2.
(1) If (C1), (C2) and (C4) hold on and τ = τ+, then Eq. (4.3) has a pair

of purely imaginary roots ±iω+.
(2) If (C1), (C2) and (C5) hold on and τ = τ+ (τ = τ− resp.), then Eq. (4.3)

has a pair of conjugate imaginary roots ±iω+ (±iω− resp.).

Let λ± = α± + iω± be the roots of Eq. (4.3) satisfying

α±(τ±) = 0, ω±(τ±) = ω±.

Differentiating (4.3) with respect to τ and substituting τ = τ±, one can verify
that the following transversality conditions hold

d

dτ
Re λ+(τ+) > 0,

d

dτ
Re λ−(τ−) < 0.

It follows that τ± are bifurcation values. Thus we have the following theorem.

Theorem 4.3. Let τ± be defined by (4.8), then we have
(1) If (C1)-(C3) hold, then all roots of Eq. (4.3) have negative real parts for

all τ ≥ 0.
(2) If (C1), (C2) and (C4) hold, then for τ ∈ [0, τ+) all roots of Eq. (4.3)

have negative real parts. When τ = τ+, Eq. (4.3) has a pair of purely
imaginary roots ±iω+ and when τ > τ+, then Eq. (4.3) has at least one
root with positive real part.

(3) If (C1), (C2) and (C5) hold, then for τ ∈ [0, τ+)∪ (τ−,+∞) all roots of
Eq. (4.3) have negative real parts and when τ ∈ [τ+, τ−], Eq. (4.3) has
at least one root with positive real part.

5. Numerical simulations

In this section, we present some numerical simulations to illustrate our theoretical
analysis. In the first example we show that when the time delay passes the critical
time, the system experiences the periodic behavior.

Example 5.1. Consider the unharvested model (2.1), with the parameter values α =
1.3, β = 0.8, δ = 0.4. As shown in the FIGURE 2, by (2.5), the system has an interior
equilibrium at (0.35, 0.35). By direct calculations, from the relations in Section 4, one
get a11 = −0.025, a12 = −0.325, a21 = 0.26, a22 = 0.26. Thus A = 0.425, B =
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Figure 2. α = 1.3, β = 0.8, δ = 0.4, without harvesting, without delay.
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Figure 3. α = 1.3, β = 0.8, δ = 0.4, without harvesting, τ = 1.
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Figure 4. α = 1.3, β = 0.8, δ = 0.4, without harvesting, τ = 9.
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0.1, C = −0.26, D = 0.078. We have A + C > 0 and B +D > 0 and B2 −D2 < 0,
so the conditions (C1), (C2) and (C4) hold on. Hence Eq. (4.7) has a positive root
ω+ = 0.202492344 and the critical time delay is τ+ = 1

ω+ ∗ arccos(0.75668594) ≃ 3.5.
In FIGURE 3, the phase portrait of the unharvested system with time delay τ = 1 is
shown. In FIGURE 4, the phase portrait of the unharvested system with time delay
τ = 9 is shown. Since τ+ < 9 the system undergoes the oscillatory behavior.

In the second example the harvesting creates a co-existence equilibrium when it
does not exist in unharvested model. By Theorem 2.3 we know that if β > δ, β −
αβ + αδ ≤ 0, then the system (2.1) has no interior equilibrium and the extinction of
the species is inevitable.
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Figure 5. α = 1.3, β = 0.8, δ = 0.1, without harvesting.
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Figure 6. α = 1.3, β = 0.8, δ = 0.1, T = 0.1, h = 1.
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Figure 7. α = 1.3, β = 0.8, δ = 0.1, T = 0.1, h = 0.1.
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Example 5.2. In FIGURE 5, the phase portrait of the system with the parameter
values α = 1.3, β = 0.8, δ = 0.1 without harvesting has been shown. The system has
no co-existence equilibria since β − αβ + αδ < 0. Then in FIGURE 6, the threshold
harvesting function with the parameter values h = 1, T = 0.1 is added to the system.
In this case, the system has a stable interior equilibrium. Finally in FIGURE 7, the
system experience periodic behavior with the harvesting parameters h = 0.1, T = 0.1.

6. Conclusions

We study a ratio-dependent functional response predator-prey model with a thresh-
old harvesting and with a time delay in the predator equation. We study the equilibria
of the system before and after the threshold. Furthermore we show that the thresh-
old harvesting can improve the undesirable behavior such as nonexistence of interior
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equilibria. The system undergoes a Hopf bifurcation when it passes a critical time
delay.
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