تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,489,427 |
تعداد دریافت فایل اصل مقاله | 15,216,978 |
بررسی منشأ برخی فلزات سنگین در آب زیرزمینی آبخوان دشت مرند با استفاده از روش های آماری چند متغیره | ||
دانش آب و خاک | ||
مقاله 18، دوره 26، شماره 2 بخش 2، شهریور 1395، صفحه 237-253 اصل مقاله (494.11 K) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
میر سجاد فخاری1؛ اصغر اصغری مقدم* 2؛ رحیم برزگر3؛ نعیمه کاظمیان4؛ مرتضی نجیب5 | ||
1دانشجوی کارشناسی ارشد هیدروژئولوژی دانشکده علوم طبیعی، دانشگاه تبریز | ||
2استاد گروه علوم زمین دانشکده علوم طبیعی، دانشگاه تبریز | ||
3دانشجوی دکتری هیدروژئولوژی دانشکده علوم طبیعی، دانشگاه تبریز | ||
4کارشناس آزمایشگاه کنترل کیفی آب استان آذربایجان شرقی | ||
5کارشناس آبهای زیرزمینی سازمان آب منطقهای آذربایجانشرقی | ||
چکیده | ||
دشت مرند یکی از دشتهای حاصلخیز استان آذربایجانشرقی است که بهدلیل کمبود آبهای سطحی، آب زیرزمینی بهعنوان مهمترین منبع برای آبیاری زمینهای کشاورزی میباشد. در این تحقیق از روشهای آماری چند متغیره شامل ضریب همبستگی، تحلیل خوشهای و تحلیل عاملی بهمنظور بررسی کیفیت آب زیرزمینی و منشأ برخی فلزات سنگین استفاده شد. بدین منظور تعداد 25 نمونه از منابع آب زیرزمینی موجود در دشت مرند جمعآوری و غلظت بعضی فلزات سنگین، یونهای اصلی و بعضی گونهها و یونهای فرعی (نیترات، فلوراید و سیلیس) اندازهگیری شد. نتایج تحلیل خوشهای، نمونههای آب را در دو گروه مجزا قرار میدهد. گروه اول معرف آبهای زیرزمینی شیرین و عمیق و گروه دوم معرف آبهای شور با سختی بالا میباشد. براساس ماتریس همبستگی، غلظت فلزاتی همچون آهن، منگنز، کروم، آلومینیوم، باریم و آرسنیک دارای همبستگی بالایی با یونهای اصلی (کلسیم، منیزیم، پتاسیم، سدیم، کلر، بیکربنات و سولفات) نیست که بیانکننده ورود این عناصر از طریق آلودگیهای ناشی از فعالیتهای انسانی میباشد. همچنین کادمیوم و سرب دارای همبستگی مثبت نسبتاً بالایی با یونهای اصلی میباشند، که نشان میدهد احتمالاًً منشأ این عناصر انحلال سنگها و سازندهای موجود در منطقه باشد. نتایج تحلیل عاملی نشان میدهد که تغییرات کیفیت آب زیرزمینی دشت مرند تحت تأثیر سه عامل اصلی بهترتیب شامل: 1- تأثیر سازندهای تبخیری و نمکی، هوازدگی طبیعی - کانیها و فرایند تعویضیونی، 2- نشت از پسابهای شهری و چاههای جذب خانگی و آبشویی کودهای کشاورزی و 3 هوازدگی سیلیکاتهای پتاسیمدار و کاربرد کودهای شیمیایی کشاورزی میباشد. | ||
کلیدواژهها | ||
آب زیرزمینی؛ تحلیل عاملی؛ دشت مرند؛ روشهای آماری؛ فلزات سنگین | ||
مراجع | ||
منابع مورد استفاده اصغری مقدم الف، برزگر ر، 1393، بررسی عوامل موثر بر غلظت بالای آرسنیک در آب زیرزمینی آبخوانهای دشت تبریز. فصلنامه علوم زمین، زمستان 93 ، سال 24، شماره 94 ، صفحههای 177 تا 190. حاج علیلو ب، خالقی ف، 1387، بررسی توزیع ناحیهای فلزات سنگین در آبهای زیرزمینی دشت مرند. دانشگاه پیام نور تبریز. نبوی م ح، 1355، دیباچهای بر زمینشناسی ایران، انتشارات سازمان زمینشناسی کشور. نجیب م، 1381، هیدروژئولوژی دشت مرند و تأثیر تغییرات سطح آب در کیفیت آب زیرزمینی، پایان نامه کارشناسی ارشد، دانشگاه سیستان و بلوچستان. Aris AZ, Abdullah MH, Ahmed A, Woong KK, 2007. Controlling factors of groundwater hydrochemistry in a small island’s aquifer. Environmental Science 4: 441-450.
Bu H, Tan X, Li S, Zhang Q, 2010. Water quality assessment of the Jinshui River (China) using multivariate statistical techniques. Environmental Earth Sciences 60: 1631-1639.
Christodoulidou M, Charalambous C, Aletrari M, Nicolaidou Kanari P, Petronda A, Ward NI, 2012. Arsenic concentrations in groundwaters of Cyprus. Journal of Hydrology )468-469): 94-100.
Das AK, 1990. Metal Ion Induced Toxicity and Detoxification by Chelation Therapy. A text book on medical aspects of bio-inorganic chemistry. CBS, Delhi.
Das P, Samantaray S, Rout GR, 1997. Studies on cadmium toxicity in plants-a review. Environment Pollution 98:29-36.
Davis A, Kempton JH, Nicholson A, 1994. Groundwater transport of arsenic and chromium at a historical tannery. Applied Geochemistry 9: 569-582.
Davis JC, 1986. Statistics and Data Analysis in Geology. Wiley International, New York.
Devi Onim J, Ramanathan AL, Singh G, 2012. Geochemical and Statistical evaluation of groundwater in Imphal and Thoubal district of Manipur, India. Journal of Asian Earth Sciences 48: 136-149.
Dragon K, 2006. Application of factor analysis to study contamination of a semi-confined aquifer (Wielkopolska Buried Valley aquifer, Poland). Journal of Hydrology 331: 272-279.
Drever JI, 1997. The Geochemistry of Natural Waters. Englewood Cliffs, New Jersey.
Duruibe JO, Ogwuegbu MOC, Egwurugwu JN, 2007. Heavy metal pollution and human bio toxic effects. International Journal of Physical Sciences 2: 112-118.
Eugene W, Rice LB, 2012. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington DC.
Evanko FR, Dzombak DA, 1997. Remediation of metals-contaminated soils and groundwater. Technology Evaluation Report TE-97-01. Pittsburgh, Pennsylvania.
Facchinelli A, Sacchi E, Mallen L, 2001. Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environment Pollution 114: 313-324.
Guler C, Thyne GD, Mccray JE, Turner AK, 2002. Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeology Journal 10: 455-474.
Helena B, Prardo R, Vega M, Barrado E, Fernandez JM, Fernandez L, 2000. Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Research 34: 807-816.
Homoncik SC, Mac Donald AM, Heal KV, Dochartaigh BE, Ngwenya BT, 2010. Manganese concentrations in Scottish groundwater. Science of the Total Environment 408(12): 2467-2473.
Jiao Y, Grant CA, Bailey LD, 2004. Effects of phosphorus and zinc fertilizer on cadmium uptake and distribution in flax and durum wheat. Journal of the Science of Food and Agriculture 84: 777-785.
Jolliffe IT, 2002. Principal Component Analysis. Springer, New York.
Ju X, Kou C, Christie P, Dou Z, Zhang F, 2007. Changes in the soil environment from excessive application of fertilizers and manures to two contrasting intensive cropping systems on the North China Plain. Environment Pollution 145: 497-506.
Kribek B, Majer V, Veselovský F, Nyambe I, 2010. Discrimination of lithogenic and anthropogenic sources of metals and sulphur in soils of the central-northern part of the Zambian Copper belt Mining District: a top soil vs. subsurface soil concept. Journal of Geochemistry Explore 104: 69-86.
Kumar M, Ramanathan AL, Rao MS, Kumar B, 2006. Identification and evaluation of hydrogeochemical processes in the groundwater environment of Delhi, India. Environmental Geology 50: 1025-1039.
Lawrence FW, Upchurch SB, 1982. Identification of water recharges areas using geochemical factor analysis. Groundwater 20: 680-687.
Mahlknecht J, 2003. Estimation of recharge in the Independence aquifer, central Mexico, by combining geochemical and groundwater flow models. PhD Thesis, Institute of Applied Geology, University of Agricultural and Life Sciences (BOKU) Vienna, Austria, 296 p.
Mencio A, Mas-Pla J, 2008. Assessment by multivariate analysis of groundwater-surface water interactions in urbanized Mediterranean streams. Journal of Hydrology 352: 355-366.
Mettler S, Abdelmola M, Hoehn E, Schoeneberger R, 2001. Characterization of iron and manganeses percipitates from an in situ groundwater treatment plant. Groundwater 39: 921-930.
Nicholson F, Smith S, Alloway B, Carlton-Smith C, Chambers B, 2003. An inventory of heavy metals inputs to agricultural soils in England and Wales. Sciences of the Total Environment 311: 205-219.
Ramanathan AL, Balakrishna PM, Chidambaram S, 2007. Groundwater Arsenic Contamination and its health effect-case studies from India and South East Asia. Indian Journal of Geochemistry 22: 371-384.
Rubio B, Nombela MA, Vilas F, 2000. Geochemistry of major and trace elements in sediments of the Ria de Vigo (NW Spain): an assessment of metal pollution. Marine Pollution Bulletin 40: 968-980.
Schroeder WH, Dobson M, Kane DM, 1987. Toxic trace elements associated with airborne particulate matter: a review. Journal of the Air and Waste Management Association 37: 1267-1285.
Sikder PK, Sarkar SS, Palchoudhry S, 2001. Geochemical evolution of groundwater in the quaternary aquifer of Calcutta and Howrah, India. Asian Journal of Earth Sciences 19: 579-594.
Tlili-Zrelli B, Azaza FH, Gueddari M, Bouhlila R, 2012. Geochemistry and quality assessment of groundwater using graphical and multivariate statistical methods. A case study: Grombalia phreatic aquifer (Northeastern Tunisia). Arabian Journal of Geosciences 6: 3545-3561.
Vasanthavigar M, Srinivasamoorthy K, Ganthi R, Vijayaraghavan K, Sarma VS, 2012. Characterisation and quality assessment of groundwater with a special emphasis on irrigation utility: Thirumanimuttar sub-basin, Tamil Nadu, India. Arabian Journal of Geosciences 5: 245-258.
Wilding LP, Odell RT, Fehrenbacher JB, Beavers AH, 1963. Source and distribution of sodium in Solonetzic soils in llions. Soil Sciences 27: 432-428.
Zhang B, Song X, Zhang Y, Han D, Tang CH, Yu Y, Ma Y, 2012. Hydrochemical characteristics and water quality assessment of surface water and groundwater in Songnen plain, Northeast China. Water Research 46: 2737-2748.
Zhihao W, Mengchang H, Chunye L, 2011. Distribution and speciation of four heavy metals (Cd, Cr, Mn, and Ni) in the surficial sediments from estuary in daliao river and yingkou bay. Environmental Earth Sciences 63: 163-175.
| ||
آمار تعداد مشاهده مقاله: 1,299 تعداد دریافت فایل اصل مقاله: 2,622 |