تعداد نشریات | 44 |
تعداد شمارهها | 1,312 |
تعداد مقالات | 16,122 |
تعداد مشاهده مقاله | 52,721,133 |
تعداد دریافت فایل اصل مقاله | 15,388,472 |
ارزیابی کارایی مدل های SWAT و IHACRES در شبیهسازی رواناب حوضه آبخیز خرمآباد | ||
دانش آب و خاک | ||
مقاله 3، دوره 26، شماره 2- بخش1، شهریور 1395، صفحه 29-42 اصل مقاله (443.96 K) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
محمد گلشن1؛ اباذر اسمعلیعوری* 2؛ کاکا شاهدی1؛ افشین جهانشاهی1 | ||
1دانشگاه علوم کشاورزی و منابع طبیعی ساری | ||
2دانشگاه محقق اردبیلی | ||
چکیده | ||
مدلسازی فرآیند بارش-رواناب در حوضههای آبخیز از نظر مدیریت منابع آب، مهندسی رودخانه، سازههای کنترل سیل و ذخیره آن اهمیت ویژهای دارد. تنوع این مدلها انتخاب مناسبترین مدل با توجه به اهداف موردنظر را دشوار میکند. در این تحقیق از مدل یکپارچه IHACRES و مدل نیمهتوزیعی SWAT برای شبیهسازی رواناب حوضه آبخیز خرمآباد با مساحت 2467 کیلومترمربع استفاده شد. بعد از همپوشانی لایهها، 232 واحد پاسخ هیدرولوژیکی (HRU) برای حوضه آبخیز بهدست آمد. در شبیهسازی رواناب با استفاده از مدل SWAT از الگوریتم SUFI2 برای تحلیل حساسیت پارامترها، واسنجی و صحتسنجی مدل استفاده شد. دوره زمانی 2004 تا 2008 برای واسنجی و دوره زمانی 2009 تا 2010 برای صحتسنجی استفاده شد. ارزیابی کارآیی مدل با استفاده از ضرایب تبیین (R2)، نش-ساتکلیف (NS)، رگرسیون خطی (bR2) و ریشه میانگین مربعات خطا (RMSE) انجام شد. مقدار این ضرایب در مدل یکپارچه بهترتیب 72/0، 53/0، 36/0 و 15/0 مترمکعب بر ثانیه و در مدل نیمهتوزیعی به ترتیب 66/0، 63/0، 44/0 و 17/0 مترمکعب بر ثانیه بهدست آمد. نتایج نشان داد که علیرغم ساده بودن مدل یکپارچه دقت آن نزدیک به مدل پیچیده نیمهتوزیعی هست و هر دو مدل برای کاربرد در منطقه مناسب هستند. بنابراین با توجه به در دسترس بودن اطلاعات میتوان از این مدلها بهمنظور شبیهسازی رواناب منطقه استفاده کرد. | ||
کلیدواژهها | ||
شبیهسازی؛ رواناب؛ خرمآباد؛ IHACRES؛ SUFI2؛ SWAT | ||
مراجع | ||
منابع مورداستفاده ابراهیمی ح، 1390. ارزیابی کارآیی مدل SWAT در شبیهسازی دبی رواناب و بار رسوب حوضه آبخیز رودخانه دویرج در استان ایلام. پایاننامه کارشناسی ارشد آبخیزداری، گروه مرتع و آبخیزداری، دانشگاه زابل. باستانیالهآبادی آ، تلوری ع و حسینی م، 1391. ارزیابی مدل SWAT2009 در برآورد رواناب حوضه آبخیز کردان. همایش ملی انتقال آب بین حوضهای، 3 خرداد، دانشگاه آزاد اسلامی واحد شهر کرد، شهرکرد. خیرفام ح، مصطفیزاده ر و صادقی سحر، 1392. تخمین دبی روزانه با استفاده از مدل IHACRES در برخی از حوضههای آبخیز استان گلستان. پژوهشنامه مدیریت حوزه آبخیز شماره 7، صفحههای 114 تا 127. زارعی م، حبیبنژاد م، شاهدی ک و قنبرپور م، 1390. کالیبراسیون و ارزیابی مدل هیدرولوژیکی IHACRES به منظور شبیهسازی جریان روزانه. مجله آب و خاک (علوم و صنایع کشاورزی)، جلد 25، شماره 1، صفحههای 104 تا 114. شریفی ف، صفارپور ش و ایوبزاده سع، 1383. ارزیابی مدل رایانهای AWBM2002 در شبیهسازی فرآیندهای هیدرولوژیکی تعدادی از حوضههای آبخیز ایران. پژوهش و سازندگی، شماره 63، صفحههای 35 تا 42. کاویان ع، گلشن م، روحانی ح و اسمعلیعوری ا، 1394. شبیهسازی رواناب و رسوب حوضه آبخیز هراز با استفاده از مدل SWAT. مجله پژوهشهای جغرافیای تهران، دوره 47، شماره 2، صفحههای 197 تا 211. گلشن م، کاویان ع، روحانی ح و اسمعلیعوری ا، 1394. واسنجی چند ایستگاهی رواناب حوضه آبخیز هراز با مدل SWAT. مجله تحقیقات آب و خاک تهران، دوره 46، شماره 2، صفحههای 293 تا 303. Abbaspour KC, 2012. SWAT-CUP 2012: SWAT calibration and uncertainty programs - a user manual. Eawag: Swiss Federal Institute Science and Technology. Abbaspour KC, Vejdani M and Haghighat S, 2007. SWAT-CUP calibration and uncertainty programs for SWAT. Christchurch, New Zealand. Abushandi E and Merkel B, 2013. Modeling rainfall runoff relations using HEC-HMS and IHACRES for a single rain event in an arid region of Jordan. Journal of Water Resource Management 27: 2391-2409. Anonymous, 1972. National Engineering Handbook. United States Department of Agriculture Soil Conservation Service (USDA). Washington DC, US Govt. printing office. Anonymous, 2000. Hydrologic Engineering Center (HEC). User’s Manual HEC-HMS Hydrologic Modeling System. Version 2.0. US Army Corps of Engineers, USA. Arnold JG, Moriasi DN, Gassman PW, Abbaspour KC, White MJ, Srinivasan R, Santhi C and Jha MK, 2012. SWAT: model use, calibration, and validation. Transactions of the ASABE 55 (4): 1491-1508. Beven K, 2001. How far can we go in distributed hydrological modelling?. Journal hydrology. Earth Systems Science 5: 1-12. Beven K, Lamb R, Quinn P, Romanowicz R and Freer J, 1995. TOPMODEL. Pp.627–668. In: VP, Singh, (Ed). Computer Models of Watershed Hydrology. Water Resources Publications. Colorado, USA. Binaman J and Shoemaker CA, 2005. An analysis of high-flow sediment event data for evaluating model performance. Journal of Hydrological Processes 19: 605-620. Boughton W, 2006. Calibrations of a daily rainfall runoff model with poor quality data. Environmental Modelling and Software 21:1114-1128. Carcano EC, Bartolini P, Muselli M and Piroddi L, 2008. Jordan recurrent neural network versus IHACRES in modelling daily stream flows. Journal of Hydrology 362: 291–307. Carlile PW, Croke BFW, Jakeman AJ and Lees BG, 2004. Development of a semi-distributed catchment hydrology model for simulation of land-use change streamflow and groundwater recharge within the little river catchment, NSW. Pp. 54–56. In I.C. Roach (Ed). Regolith, CRC LEME. Clausen B and Biggs BJF, 2000. Flow variables for ecological studies in temperate streams: groupings based on covariance. Journal of Hydrology 237: 184- 197. Croke BFW, Andrews F, Jakeman AJ, Cuddy SM and Luddy A, 2005. Redesign of the IHACRES rainfall-runoff model. In 29th Hydrology and Water Resources Symposium. 21–23 February, Canberra. Croke BFW, Andrews F, Jakeman AJ, Cuddy SM and Luddy A, 2006. IHACRES Classic Plus: A redesign of the IHACRES rainfall runoff model. Environment Modelling and Software 21: 426-427. Croke BFW, Merritt WS and Jakeman AJ, 2003. A dynamic model for predicting hydrologic response to land cover changes in gauged and ungauged catchments. Journal of Hydrology 291: 115–131. Cunderlik TM, 2003. Hydrologic model selection fort the CFCAS project: Assessment of water resources Risk and vulnerability to Changing Climatic Conditions, project Report I. University of Western Ontario, Canada. Dye PJ and Croke BFW, 2003. Evaluation of streamflow predictions by the IHACRES rainfall-runoff model in two South African catchments. Environmental Modelling and Software 18: 705–712. Ficklin DL, Stewart IT and Maurer EP, 2013. Effects of projected climate change on the hydrology in the Mono Lake Basin. Journal California Climatic Change 116 (1): 111-131. Gassman PW, Reyes M, Green CH and Arnold JG, 2007. The soil and water assessment tool: historical development, applications, and future directions. Journal Transactions of the ASABE 50 (4): 1212-1250. Gotzinger J and Bgrdossy A, 2007. Comparison of four regionalization methods for a distributed hydrological model. Journal of Hydrology 333: 374–384. Kirchner JW, 2012. Getting the right answers for the right reasons: Linking measurements, analyses, and models to advance the science of hydrology. Water Resources Researches 42: 1-5. Kisi O, 2004. River flow modeling using artificial neural networks. Journal of Hydrologic Engineering ASCE 9: 60-63. Lerat J, Andréassian V, Perrin C, Vaze J, Perraud JM, Ribstein P and Loumagne C, 2012. Do internal flow measurements improve the calibration of rainfall–runoff models?. Journal of Water Resource Research 48 (2): 1-18. Letcher RA, Jakeman AJ, Calfas M, Linforth S, Baginska B and Lawrence I, 2002. A Comparison of catchment water quality models and direct estimation techniques. Environmental Modelling and Software 17: 77-85. Neitsch SL, Arnold JG, Kiniry JR and Williams J, 2005. Soil Water Assessment Tool Theoretical Document, Version 2005. Grassland, Soil and Water Research Laboratory, Agricultural Research Service, TX, USA. Nielsen SA and Hansen E, 1973. Numerical simulation of the rainfall runoff process. Nordic Hydrology 4: 171–190. Osmani H, Motamedvaziri B and Moeini A, 2013. Flow simulation, calibration and validation of SWAT model (case study of upstream the Latyan dam). Journal of Watershed Engineering and Management 5: 134-143. Santhi C, Arnold JG, Williams J, Dugas WA and Hauck L, 2001. Validation of the SWAT model on a large river basin with point and nonpoint sources. The American Water Resources Association 37 (5): 1169-1188. Sriwongsitanon N and Taesombat W, 2011. Estimation of the IHACRES model parameters for flood estimation of ungauged catchments in the upper ping river basin. Kasetsart Journal (Natural Science) 45: 917-931. Sugawara M, 1974. Tank model and its application to Bird Creek, Wollombi Brook, Bikin Rive, Kitsu River, Sanaga River and Namrmune. Research Note of the National Research Center for Disaster Prevention 11: 1–64. Suppes P, 1961. A comparison of the meaning and uses of models in mathematics and the empirical sciences. Springer, Netherlands. Taesombat W and Sriwongsitanon N, 2010. Flood investigation for the upper Ping river basin using the mathematical models. Kasetsart Journal (Natural Science) 44: 152–166. Vaze J, Post DA, Chiew FHS, Perraud JM, Viney NR and Teng J, 2010. Climate non-stationary-validity of calibrated rainfall–runoff models for use in climate change studies. Journal of Hydrology 394: 447-457. Yang J, Reicher P, Abbaspour KC, Xia J and Yang H, 2008. Comparing uncertainty analysis techniques for a SWAT application to the Chao he Basin in China. Journal of Hydrology 358 (1–2): 1–23. Ye W, Jakeman AJ and Young PC, 1997. Identification of improved rainfall runoff models for an ephemeral low-yielding Australian catchment. Environmental Modelling and Software 13: 59-74. Yen H, White MJ, Jeong J and Arnold JG, 2015. Evaluation of alternative surface runoff accounting procedures using the SWAT model. International Journal of Agriculture and Biology Engineering 8 (1): 1-15. Young PC and Garnier H, 2006. Identification and estimation of continuous time, data-based mechanistic (DBM) models for environmental systems. Environmental Modelling and Software 21: 1055-1072. Zuo D, Xu Z, Zhao J, Abbaspour K, Yang H, 2015. Response of runoff to climate change in the Wei River basin, China. Hydrological Sciences Journal. 60 (3): 505-522.
| ||
آمار تعداد مشاهده مقاله: 1,707 تعداد دریافت فایل اصل مقاله: 1,497 |