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Abstract In this paper, non-polynomial spline method for solving Coupled Burgers’ Equations
are presented. We take a new spline function. The stability analysis using Von-

Neumann technique shows the scheme is unconditionally stable. To test accuracy the

error norms L2, L∞ are computed and give two examples to illustrate the sufficiency
of the method for solving such nonlinear partial differential equations. These results

show that the technique introduced here is accurate and easy to apply.
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1. Introduction

The purpose of this paper is to apply the non-polynomial spline method to the
coupled Burgers’ equation. The coupled Burgers’ equation in the form

ut − uxx + k1uux + k2(uv)x = 0, (1.1)

vt − vxx + k1vvx + k3(uv)x = 0. (1.2)

Where k1, k2 and k3 are real constants and subscripts x and t denote differentiation,
x
distance, and t time is considered. Boundary conditions

u(a, t) = f1(a, t), u(b, t) = f2(b, t),
v(a, t) = g1(a, t), v(b, t) = g2(b, t), 0 ≤ t ≤ T (1.3)
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and initial conditions

u(x, 0) = f(x),
v(x, 0) = g(x), a ≤ x ≤ b. (1.4)

Various methods are used solve the nonlinear coupled Burgers’ equations numer-
ically; which is suggested by [1] firstly. A solution based on fourth order accurate
compact ADI scheme by Radwan [2], Khater et al [3] studied Burgers’ equations by
using A Chebyshev spectral collocation method, Ali et al proposed the algorithm for
the numerical solution of two-dimension coupled Burgers’ equations using A meshfree
technique [4], Rashid and MD studied Viscous coupled Burgers’ equations by using
the Fourier pseudo-spectral method [5], Liu and Hou used the generalized differential
transform method for solving the space and time fractional coupled Burgers’ equa-
tions [6], cubic B-spline collocation method used by Mittal and Arora for solving
the nonlinear coupled viscous Burgers’ equations [7], Mokhtari et al used generalized
differential quadrature method for solving coupled Burgers’ equations [8], Sadek and
Kucuk [9] studied Burgers’ equations by using a robust technique for solving optimal
control of Burgers’ type equations, a differential quadrature method [10], Kutluay
and Ucar used Galerkin quadratic B-spline finite element method for solving coupled
Burgers’ equations [11], Srivastava et al studied one-dimensional coupled nonlinear
Burgers’ equations by using a fully implicit finite-difference method [12], a composite
numerical scheme based on finite difference [13], Kumar and Pandit used an implicit
logarithmic finite difference method for solving coupled Burgers’ equations [14], Mit-
tal and Tripathi studied coupled Burgers’ equations by using modified cubic B-spline
collocation method [15]. There are not many articles about non-polynomial spline
method for the solving nonlinear differential equation system. In this paper, we take
a new spline function as form: T3 = span{1, x, tanh(ωx), sech(ωx)}, where ω is the
frequency of the trigonometric part of the spline functions which will be used to raise
the accuracy of the method [16]. This spline function gives the same results if we
used the spline function based on other trigonometric functions sin and cos but in
this paper, we take spline function with different form. Also, we take linearization of
the nonlinear term and we used finite difference approximation and applying Crank-
Nicolson scheme. The paper is organized as follows. In Section 2, some details about
non-polynomial spline method are provided. In Section 3, the stability is documented.
In section 4, numerical results for two different problems and some related figures are
given in order to show the efficiency as well as the accuracy of the proposed method.
Finally, conclusions are followed in Section 5.

2. Derivation of the Numerical Method

In this section, we gave theoretically discussed for the numerical method using new
spline function.

We take spline function in this form T3 = span{1, x, tanh(ωx), sech(ωx)}. To set
up the non-polynomial spline method, we select an integer N> 0 and a time step
size k> 0 with h = b−a

N+1 , the mesh points (xj , tn) are xj = a + jh and tn = nk, for

n = 0, 1, ..., and j = 0, 1, ..., N + 1. Let Unj and V nj be an approximation to u(xj , tn)
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and v(xj , tn) respectively, obtained by the segment pj(x, tn) of the mixed spline func-
tion passing through the points (xj , U

n
j ),(xj+1, U

n
j+1),(xj , V

n
j ) and (xj+1, V

n
j+1) re-

spectively. Each segment has the form

pj(x, tn) = aj(tn) tanhω(x−xj)+bj(tn) sechω(x−xj)+cj(tn)(x−xj)+dj(tn),

(2.1)

for each j = 0, 1, ..., N . To obtain expressions for the coefficients of Eq. (2.1) in terms
of Unj ,Unj+1, Snj and Snj+1 which are as follows:

Unj = pj(xj , tn), Unj+1 = pj(xj+1, tn), Snj = p′′j (xj , tn) and Snj+1 = p′′j (xj+1, tn).

(2.2)

Using Eqs. (2.1) and (2.2), we get

aj + dj = Unj ,
aj tanh θ + bj sechθ + cjh+ dj = Unj+1,
−bjω2 = Snj ,

−2ajω
2 sech2θ tanh θ − bjω2 sech3θ + bjω

2 sechθ tanh2 θ = Snj+1,

(2.3)

where aj ≡ aj(tn), bj ≡ bj(tn), cj ≡ cj(tn), dj ≡ dj(tn) and θ = ωh. By solving last
four equations in (2.3) we obtain expressions for the coefficients as:

bj = −h2

θ2 S
n
j ,

rrrai =
h2(Sn

j sech3θ−Sn
j sechθ tanh2 θ−Sn

j+1)

2θ2 sech2θ tanh θ ,

dj = h2

θ2 S
n
j + Unj ,

cj =
Un

j+1−U
n
j

h +
h(Sn

j sechθ−Sn
j )

θ2 +
h(Sn

j sech3θ+Sn
j sechθ tanh2 θ+Sn

j+1)

2θ2 sech2θ ,

(2.4)

using the continuity condition of the first derivative at x = xj , that is p′j(xj , tn) =
p′j−1(xj , tn), we get the flowing equations:

ajω + cj = aj−1ω sech2θ − bj−1ω sechθ tanh θ + cj−1, j = 1, ..., N. (2.5)

Using Eq. (2.4), after slight rearrangements, then Eq. (2.5) becomes

Unj+1 − 2Unj + Unj−1 = αSnj+1 + βSnj + γSnj−1, j = 1, ..., N. (2.6)

Now to obtain expressions for the coefficients of Eq. (2.1) in terms of V nj ,V nj+1, δnj
and δnj+1 which are as follows:

V nj = pj(xj , tn), V nj+1 = pj(xj+1, tn), δnj = p′′j (xj , tn) and δnj+1 = p′′j (xj+1, tn).

(2.7)

Using Eqs. (2.1) and (2.7) and applying the same way we can get

V nj+1 − 2V nj + V nj−1 = αδnj+1 + βδnj + γδnj−1, j = 1, ..., N, (2.8)
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where

α = h3ω
2θ2 sech2θ tanh θ −

h2

2θ2 sech2θ , β = −h3ω sech3θ
2θ2 sech2θ tanh θ

+h3ω sechθ tanh2 θ
2θ2 sech2θ tanh θ + h2

θ2 −
h2 sechθ

2θ2 + h2 sech3θ
2θ2 −

h2 sechθ tanh2 θ
2θ2 sech2θ − h2ω

2θ2 tanh θ + h2

2θ2 sech2θ , γ = h3ω(sech3θ−sechθ tanh2 θ)
2θ2 tanh θ

+h3ω sechθ tanh θ
θ2 + h2(sechθ−1)

θ2 + h2(− sech3θ+sechθ tanh2 θ)
2θ2 sech2θ , and θ = ωh.

Remark As ω → 0, that is θ → 0, then (α, β, γ)→ (h
2

6 ,
4h2

6 , h
2

6 ).
Then we consider Eqs. (2.6) and (2.8) at two-time level n and n + 1, addition

them to obtain the following relations:

(Un+1
j+1 + Unj+1)− 2(Un+1

j + Uni ) + (Un+1
j−1 + Unj−1) = α(Sn+1

j+1 + Snj+1)

+β(Sn+1
j + Snj ) + α(Sn+1

j−1 + Snj−1),

(V n+1
j+1 + V nj+1)− 2(V n+1

j + V ni ) + (V n+1
j−1 + V nj−1) = α(δn+1

j+1 + δnj+1)

+β(δn+1
j + δnj ) + α(δn+1

j−1 + δnj−1), j = 1, ..., N.

(2.9)

On the other hand, we rewrite (1.1) and (1.2) as

∂2u(x,t)
∂x2 = ∂u(x,t)

∂t + k1u(x, t)∂u(x,t)
∂x + k2 [u(x, t)v(x, t)]x ,

∂2v(x,t)
∂x2 = ∂v(x,t)

∂t + k1v(x, t)∂v(x,t)
∂x + k3 [u(x, t)v(x, t)]x ,

∂2u(x,t)
∂x2 = ∂u(x,t)

∂t + k1u(x, t)∂u(x,t)
∂x + k2 [u(x, t)v(x, t)]x ,

∂2v(x,t)
∂x2 = ∂v(x,t)

∂t + k1v(x, t)∂v(x,t)
∂x + k3 [u(x, t)v(x, t)]x .

Take the approximation u(x, t) = Unj and v(x, t) = V nj then ∂2u(x,t)
∂x2 = Snj and

∂2v(x,t)
∂x2 = δnj , and from famous Cranck–Nicolson scheme and forward finite difference

approximation for the derivative t [17], we get.

[
Sn+1
j + Snj

2

]
=
Un+1
j − Unj

k
+k1

[
(UUx)n+1

j + (UUx)nj
2

]
+k2

[
(UV )x

n+1
j + (UV )x

n
j

2

]
,

(2.10)

[
δn+1
j + δnj

2

]
=
V n+1
j − V nj

k
+k1

[
(V Vx)n+1

j + (V Vx)nj
2

]
+k3

[
(UV )x

n+1
j + (UV )x

n
j

2

]
,

(2.11)

we take linearization of the nonlinear term as follows

(UUx)n+1
j = Unj Ux

n+1
j + Un+1

j Ux
n
j − Unj Ux

n
j ,

(V Vx)n+1
j = V nj Vx

n+1
j + V n+1

j Vx
n
j − V nj Vx

n
j .

(2.12)
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From (2.10), (2.11) and (2.12), the following difference equations can be extracted:

Sn+1
j + Sn

j = 2
k
(Un+1

j − Un
j )− k1

2h
(Un+1

j (Un
j+1 − Un

j−1) + Un
j (U

n+1
j+1 − Un+1

j−1 ))

+ k2
2h

(Un+1
j (V n

j+1 − V n
j−1) + Un

j (V
n+1
j+1 − V n+1

j−1 ) + V n+1
j (Un

j+1 − Un
j−1)

+V n
j (Un+1

j+1 − Un+1
j−1 )), j = 1, ..., N.

(2.13)

δn+1
j + δnj = 2

k
(V n+1

j − V n
j )− k1

2h
(V n+1

j (V n
j+1 − V n

j−1) + V n
j (V n+1

j+1 − V n+1
j−1 ))

+ k3
2h

(Un+1
j (V n

j+1 − V n
j−1) + Un

j (V
n+1
j+1 − V n+1

j−1 ) + V n+1
j (Un

j+1 − Un
j−1)

+V n
j (Un+1

j+1 − Un+1
j−1 )), j = 1, ..., N.

(2.14)

Substituting (2.13) and (2.14) in (2.9) and doing some calculations, we get

A1U
n+1
j+1 +A2U

n+1
j +A3U

n+1
j−1 +A4V

n+1
j+1 +A5V

n+1
j−1

= A6U
n
j+1 +A7U

n
j +A8U

n
j−1 +A9V

n
j+1 +A10V

n
j−1,

(2.15)

B1V
n+1
j+1 +B2V

n+1
j +B3V

n+1
j−1 +B4U

n+1
j+1 +B5U

n+1
j−1 f

= B6V
n
j+1 +B7V

n
j +B8V

n
j−1 +B9U

n
j+1 +B10U

n
j−1.

(2.16)

Where

A1 = 1− 2α
k −

αk1
2h (Unj+1 + Unj−1)− αk2

2h (V nj+1 + V nj−1)− βk1
2h U

n
j −

βk2
2h V

n
j ,

A2 = −2− 2β
k ,

A3 = 1− 2α
k + αk1

2h (Unj+1 + Unj−1) + αk2
2h (V nj+1 + V nj−1) + βk1

2h U
n
j + βk2

2h V
n
j ,

A4 = −αk22h (Unj+1 + Unj−1)− βk2
2h U

n
j ,

A5 = αk2
2h (Unj+1 + Unj−1) + βk2

2h U
n
j ,

A6 = −1− 2α
k + αk1

2h (Un+1
j+1 + Un+1

j−1 ) + αk2
2h (V n+1

j+1 + V n+1
j−1 ) + βk1

2h U
n+1
j + βk2

2h V
n+1
j ,

A7 = 2− 2β
k ,

A8 = −1− 2α
k −

αk1
2h (Un+1

j+1 + Un+1
j−1 )− αk2

2h (V n+1
j+1 + V n+1

j−1 )− βk1
2h U

n+1
j − βk2

2h V
n+1
j ,

A9 = αk2
2h (Un+1

j+1 + Un+1
j−1 ) + βk2

2h U
n+1
j ,

A10 = −αk22h (Un+1
j+1 + Un+1

j−1 )− βk2
2h U

n+1
j ,

B1 = 1− 2α
k −

αk1
2h (V nj+1 + V nj−1)− αk2

2h (Unj+1 + Unj−1)− βk1
2h V

n
j −

βk2
2h U

n
j ,

B2 = −2− 2β
k ,

B3 = 1− 2α
k + αk1

2h (V nj+1 + V nj−1) + αk2
2h (Unj+1 + Unj−1) + βk1

2h V
n
j + βk2

2h U
n
j ,

B4 = −αk22h (V nj+1 + V nj−1)− βk2
2h V

n
j ,

B5 = αk2
2h (V nj+1 + V nj−1) + βk2

2h V
n
j ,

B6 = −1− 2α
k + αk1

2h (V n+1
j+1 + V n+1

j−1 ) + αk2
2h (Un+1

j+1 + Un+1
j−1 ) + βk1

2h V
n+1
j + βk2

2h U
n+1
j ,

B7 = 2− 2β
k ,

B8 = −1− 2α
k −

αk1
2h (V n+1

j+1 + V n+1
j−1 )− αk2

2h (Un+1
j+1 + Un+1

j−1 )− βk1
2h V

n+1
j − βk2

2h U
n+1
j ,

B9 = αk2
2h (V n+1

j+1 + V n+1
j−1 ) + βk2

2h V
n+1
j ,

B10 = −αk22h (V n+1
j+1 + V n+1

j−1 )− βk2
2h V

n+1
j .
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Now to solving this system, we using initial conditions Eq. (1.4) to find the value
of U0

j and V 0
j , where U0

j = f(xj) and V 0
j = g(xj), for each j = 0, 1, ..., N + 1. If

the procedure is reapplied all the approximation U1
j and V 1

j are known, the values of

U2
j , U

3
j , U

4
j , ...and V 2

j , V
3
j , V

4
j , ... can be obtained in a similar manner .

3. Stability analysis of the method

In this section, the standard Von-Neumann concept is applied to investigate the
stability analysis of the schemes. At first, we must linearize the nonlinear term of the
coupled Burgers’ equation by making (U) and (V ) as local constants λ1, λ2 respec-
tively. According to the Von- Neumann concept, we get

Unj = Aζn exp(ijφ),
V nj = Bζn exp(ijφ),

(3.1)

g =
ζn+1

ζn
,

where A and B are the harmonics amplitude, φ = kh, k is the mode number, i =
√
−1

and g is the amplification factor of the schemes. Substituting (3.1) into the difference
(2.15), we get

ζn+1
[
A
[(

2− 4α
k

)
cosφ−

(
2 + 2β

k

)
−
[
αk1
h λ1 + αk2

h λ2 + βk1
2h λ1 + βk2

2h λ2

]
2i sinφ

]]
+ζn+1

[
−B

[
αk2
h λ1 + βk2

2h λ1

]
2i sinφ

]
=

ζn
[
A
[
−
(
2 + 4α

k

)
cosφ−

(
−2 + 2β

k

)
+
[
αk1
h λ1 + αk2

h λ2 + βk1
2h λ1 + βk2

2h λ2

]
2i sinφ

]]
+ζn

[
B
[
αk2
h λ1 + βk2

2h λ1

]
2i sinφ

]
,

we get

g =
X2 + iY

X1 − iY
, (3.2)

whereX1 = A
[(

2− 4α
k

)
cosφ−

(
2 + 2β

k

)]
, X2 = A

[(
−2− 4α

k

)
cosφ−

(
−2 + 2β

k

)]
and

Y =

[
B

[
αk2

h
λ1 +

βk2

2h
λ1

]
+A

[
αk1

h
λ1 +

αk2

h
λ2 +

βk1

2h
λ1 +

βk2

2h
λ2

]]
2i sinφ.

From (3.2) we get |g| ≤ 1, hence the scheme is unconditionally stable. It means that
there is no restriction on the grid size, i.e. on h and ∆t, but we should choose them
in such a way that the accuracy of the scheme is not degraded.

Similar results can be obtained from the difference (2.16), due to symmetric uandv.

4. Numerical Tests and Results of coupled Burgers’ equation

In this section, we present two numerical examples to test the validity of our scheme
for solving coupled Burgers’ equations.
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The norms L2-norm and L∞-norm are used to compare the numerical solution with
the analytical solution [18].∥∥uE − uN∥∥

2
=
√
h
∑N
i=0(uEj − uNj )2,∥∥uE − uN∥∥∞ = max

j

∣∣uEj − uNj ∣∣ , j = 0, 1, · · · , N, (4.1)

where uE is the exact solution u and uN is the approximation solution UN .
Now we consider two test problems.
Test problem (1.1):
Consider the coupled Burgers’ equations (1.1) and (1.2) with the following initial

and boundary conditions:

u(x, 0) = v(x, 0) = sin(x), −π ≤ x ≤ π
and

u (−π, t) = u (π, t) = 0, 0 ≤ t ≤ T,
v (−π, t) = v (π, t) = 0, 0 ≤ t ≤ T.

The exact solution is

u(x, t) = v(x, t) = e−t sin(x), −π ≤ x ≤ π, 0 ≤ t ≤ T.
We compute the numerical solutions using the selected values k1 = −2, k2 = 1 and
k3 = 1 with different values of the time step length ∆t. In our first computation,
we compute L2- norm and L∞- norm at t = 0.1, k = 0.001 while the number of
partition N changes. The corresponding results are presented in table 1. In our
second computation, we compute L2- norm and L∞- norm at time level t = 1 for
the same parameters in first computation with different decreasing values of ∆t. The
corresponding results are reported in table 2. In both computations, the results are
same for u(x, t) and v(x, t) because of symmetric initial and boundary conditions.
And also we make a comparison of our numerical results of the problem (1.1) with
the results obtained from [15] and [5] for N = 50, k = 0.01, k1 = −2, k2 = k3 = 1
with different timet. The corresponding results are presented in table 3.

Table 1: L2- norm and L∞- norm for ω → 0, t = 0.1, k = 0.001 at different N
N u(x, t) v(x, t) [7]

L2- norm L∞- norm L2- norm L∞- norm L∞- norm
50 6.28469 E-4 8.93728 E-4 6.28469 E-4 8.93728 E-4 -
100 1.33123 E-4 1.79992 E-4 1.33123 E-4 1.79992 E-4 -
128 8.61281E-5 9.40987E-5 8.61281E-5 9.40987E-5 1.8178E-5
200 6.90219 E-5 4.56693 E-5 6.90219 E-5 4.56693 E-5 -

Table 2: L2- norm and L∞- norm for ω → 0, t = 1, k = 0.01, 0.001 at different N =
200

k u(x, t) v(x, t)
L2- norm L∞- norm L2- norm L∞- norm

0.01 4.06918E-3 5.01558E-3 4.06918E-3 5.01558E-3
0.001 2.70771E-4 3.47104E-4 2.70771E-4 3.47104E-4
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Table 3: Comparison of numerical results of the problem (1.1) with the results
obtained from [15] and [5] for the variable u and v with, N = 50, k = 0.01. ω → 0,

t u(x, t) v(x, t) [15] [5]
L2- norm L∞- norm L2- norm L∞- norm L∞- norm L∞- norm

0.5 1.7887E-3 1.0301E-3 1.7887E-3 1.0301E-3 1.1031 E-4 -
1 1.9529E-3 1.1556E-3 1.9529E-3 1.1556E-3 1.3369 E-4 1.8471E-3

In table 3 we show that our results are related to the results in [15] and [5]. The
corresponding graphical illustrations are presented in figures 1 computed solutions of
u(x, t) and v(x, t) for k1 = −2, k2 = 1, k3 = 1, N = 200 and ∆t = k = 0.001 at
t = 0, 0.5, 1. In figure 2 computed solutions of u(x, t) and v(x, t) for k1 = −2, k2 =
1, k3 = 1, N = 200 and ∆t = k = 0.001 at t = 0, 0.05, 0.1. In figure 3 computed
solutions (exact and approximation) of u(x, t)and v(x, t) for k1 = −2, k2 = 1, k3 =
1, N = 200 and ∆t = k = 0.001 at t = 0.1. In figures 4-6, computed solutions of
u(x, t) and v(x, t) at t = 0.1, ∆t = k = 0.001 and N = 200 for k1, k2, ,k1, k3 and
k2, k3 fixed respectively.

Figure 1: Computed approximation solutions of u and v for k1 = −2, k2 = 1, k3 =
1, N = 200 and ∆t = k = 0.001 at t = 0, 0.5, 1.
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Figure 2: Computed approximation solutions of u and v for k1 = −2, k2 = 1, k3 =
1, N = 200 and ∆t = k = 0.001 at t = 0, 0.05, 0.1.

Figure 3: Computed solutions (exact and approximation) of u and v for k1 =
−2, k2 = 1, k3 = 1, N = 200 and ∆t = k = 0.001 at t = 0.1.

Figure 4: Computed approximation solutions of u and v for k1 = −2, k2 = 1, k3 =
8, N = 200 and ∆t = k = 0.001 at t = 0, 0.05, 0.1.

Figure 5: Computed approximation solutions of u and v for k1 = −2, k2 = 8, k3 =
1, N = 200 and ∆t = k = 0.001 at t = 0, 0.05, 0.1.
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Figure 6: Computed approximation solutions of u and v for k1 = 2, k2 = 1, k3 =
1, N = 200 and ∆t = k = 0.001 at t = 0, 0.05, 0.1. Testproblem(1.2): Numerical
solutions of considered coupled Burgers’ equations are obtained for k1 = 2 with dif-
ferent values of k2 and k3 at different time levels. In this situation the exact solution
is

u(x, t) = a0 − 2A
[

2k2−1
4k2k3−1

]
tanh(A(x− 2At)),

v(x, t) = a0

[
2k3−1
2k2−1

]
− 2A

[
2k2−1

4k2k3−1

]
tanh(A(x− 2At)).

Thus, the initial and boundary conditions are taken from the exact solution is

u(x, 0) = a0 − 2A
[

2k2−1
4k2k3−1

]
tanh (A(x)) ,

v(x, 0) = a0

[
2k3−1
2k2−1

]
− 2A

[
2k2−1

4k2k3−1

]
tanh (A(x)) .

Thus, the initial and boundary conditions are extracted from the exact solution.

Where a0 = 0.05 and A = 1
2

[
a0(4k2k3−1)

2k2−1

]
. The numerical solutions for u(x, t) and

v(x, t) have been computed for the domain x ∈ [−10, 10], k = 0.01 and a number
of partitions N = 10, N = 100 and N = 200. L2- norm and L∞- norm have been
computed in table 4 for t = 1, k1 = 2, k2 = 0.1 and k3 = 0.3. In tables 5 and 6
we make comparison of our numerical results of the problem (1.2) with the results
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obtained from [3] and [5] for the variables u(x, t) and v(x, t) with a0 = 0.05, N =
16, k = 0.01 at different time t and different values of k2, k3. In tables 7 and 8,
we make comparison of our numerical results of the problem (1.2) with the results
obtained from [10] and [7] for the variables u(x, t) and v(x, t) with a0 = 0.05, N = 21,
k = 0.01 at different time t and different values of k2, k3. Table 4: L2- norm and L∞-
norm for t = 1, k = 0.01 at different values of N
k1 = 2, k2 = 0.1 and k3 = 0.3, ω → 0.
N u(x, t) v(x, t)

L2- norm L∞- norm L2- norm L∞- norm
10 3.34934 E-4 8.70937 E-5 1.3654 E-4 4.93669 E-5
100 4.32057 E-4 1.19748 E -4 3.92223E-4 1.112661E-4
200 4.30722 E-4 1.14653 E-4 3.90891E-4 1.12554 E-4

Table 5. Comparison of numerical results of the problem (1.2) with the results
obtained from [3] and [5] for the variable u with ω → 0, /,a0 = 0.05, N = 16,
k = 0.01.

t k2 k3 u(x, t) [3] [5]
L2- norm L∞- norm L∞- norm L∞- norm

0.5 0.1 0.3 1.64456 E-4 4.32274 E-5 1.44 E-3 9.619E-4
0.3 0.3 2.23953E-4 5.97431 E-5 - -

1.0 0.1 0.3 3.29426 E-4 8.61447 E-5 1.27E-3 1.153E-3
0.3 0.3 4.49034 E-4 1.19369 E-4 - -

Table 6: Comparison of numerical results of the problem (1.2) with the results
obtained from [3] and [5] for the variable v with ω → 0, a0 = 0.05, N = 16, k = 0.01

t k2 k3 v(x, t) [3] [5]
L2- norm L∞- norm L∞- norm L∞- norm

0.5 0.1 0.30 6.60178 E-5 2.42852 E-5 5.42E-4 3.332E-4
0.3 0.30 2.23953 E-4 5.97431 E-5 - -

1.0 0.1 0.30 1.32006 E-4 4.78615 E-5 1.29E-3 1.162E-3
0.3 0.30 4.49034 E-4 1.19369 E-4 - -

In tables 5 and 6 we show that our results are related to the results in [3] and [5].
Table 7. Comparison of numerical results of the problem (1.2) with the results

obtained from [10] and [7] for the variable u with ω → 0, a0 = 0.05, N = 21, k1 =
2, k = 0.01

t k2 k3 u(x, t) [10] [7]
L2- norm L∞- norm L∞- norm L∞- norm

0.5 0.1 0.30 1.63355 E-4 4.30493 E-5 4.173 E-5 4.167E-5
0.3 0.30 2.22563 E-4 5.95221 E-5 - -

1.0 0.1 0.30 8.27221 E-4 8.58752 E-5 8.275E-5 8.258E-5
0.3 0.30 4.46234 E-4 1.19032 E-4 - -
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8: Comparison of numerical results of the problem (1.2) with the results obtained
from [10] and [7] for the variable v with a0 = 0.05, N = 21, k = 0.01, ω → 0.

t k2 k3 v(x, t) [10] [7]
L2- norm L∞- norm L∞- norm L∞- norm

0.5 0.1 0.30 6.51922E-5 2.39969 E-5 5.418E-5 1.480E-4
0.3 0.30 2.22563 E-4 5.95221 E-5 - -

1.0 0.1 0.30 1.30437 E-4 4.74225 E-5 1.074E-4 4.770E-4
0.3 0.30 4.46234 E-4 1.19032 E-4 - -

In tables 7 and 8, we show that our results are related to the results in [10] and [7].
Now we take the test problem (1.2) at the domain x ∈ [0, 1], k = 0.001 and

k1 = 2, k2 = 1, k3 = 0.3. L2-norm and L∞- norm have been computed see Table 10
for t = 1 with different values of N .

Table 9: L2- norm and L∞- norm for t = 1, k = 0.001 at different values of N
k1 = 2, k2 = 1 and k3 = 0.3, ω → 0.
N u(x, t) v(x, t)

L2- norm L∞- norm L2- norm L∞- norm
10 3.13532E-5 2.99042 E-5 1.08304E-5 1.0324E-5
100 3.00432E-5 2.99041E-5 1.07781E-5 1.03202E-5
200 3.00234E-6 2.98034E-5 1.06245E-5 1.03101E-5

The corresponding graphical illustrations are presented in figure 7 computed ap-
proximation solutions of u(x, t) and v(x, t) for k1 = 2, k2 = 1, k3 = 0.3, N = 200
and ∆t = k = 0.001 at t = 0, 0.5, 1, x ∈ [0, 1].

Figure 7: Computed approximation solutions of u and v for k1 = 2, k2 = 0.1, k3 =
0.3, N = 200 and ∆t = k = 0.01 at t = 0, 0.5, 1.

5. CONCLUSIONS:

In this paper, we applied non-polynomial spline method to develop a numerical
method for solving coupled Burgers’ equations and shown that the schemes are un-
conditionally stable. We take a new spline function and we make linearization for the
nonlinear term. We tested our schemes through two test problems. Accuracy was
shown by calculating error norms L2 andL∞.
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