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Abstract Based on symbolic manipulation program Maple and using Riccati equation mapping
method several explicit exact solutions including kink, soliton-like, periodic and ra-
tional solutions are obtained for (2+1)-dimensional variable coefficient Broer–Kaup
system in quite a straightforward manner. The known solutions of Riccati equation

are used to construct new solutions for variable coefficient Broer–Kaup system.

Keywords. Broer–Kaup equations, Riccati equation mapping method, Explicit exact solutions.

2010 Mathematics Subject Classification. 35C07, 35C08, 37A25, 35C99.

1. Introduction

Last two decades have witnessed considerable number of new methods for solv-
ing nonlinear partial differential equations including those with constant and variable
coefficients as well. With advent of tanh method [22, 23] many known physically
relevant PDEs were investigated for explicit exact solutions and the introduction of
several symbolic manipulation programs like “Maple” and “Mathematica” greatly
helped the researcher to perform complex algebraic calculations. The Jacobi elliptic
function expansion method [20] followed by its generalization like the F-expansion
method [33], and Exp-function method [10]. The two new methods appear to have
some advantages over the first one in term of its simplicity and generalization. Be-
side these algebraic manipulations for solving nonlinear PDEs, there are much more
sophisticated methods like Lie group method [2], inverse scattering transform [24],
Hirota’s direct method [11] for solving nonlinear PDEs.
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In the present paper we investigate variable coefficient (2+1)-dimensional Broer–
Kaup equations using Riccati equation mapping method

ut,y =b(t)
[
ux,x,y − 2 (uux)y − 2vx,x

]
,

vt =b(t) [−vx,x − 2 (uv)x] ,
(1.1)

where we have introduced the time-dependent function b(t) in order to incorporate
more realistic physical phenomena. If b(t) = 1, then system (1.1) reduces to Broer–
Kaup system [21] and for y = x it reduces to (1+1)–dimensional model which can
be used to describe long waves in shallow water [31]. Moreover, using some transfor-
mations [4] (2+1)–dimensional Broer–Kaup equation can be transformed into (2+1)–
dimensional dispersive long wave equation [3]. Recently the system (1.1) has been in-
vestigated for non-traveling wave solutions and fractal solitons [18] and many soliton-
like solutions have also been obtained [29]. Through simple transformation v = uy,
the Broer–Kaup system (1.1) reduced to

ut,y + b(t)
[
ux,x,y + 2 (uux)y

]
= 0. (1.2)

The Broer–Kaup equation (1.2) has been rigourously investigated using Painlevé and
Lie group analysis [17], wherein under one dimensional optimal sub-algebra several
dimensional reductions of (1.2) and some interesting periodic, kink and soliton like
solutions have also been obtained.

After inception of Broer–kaup equation in Ref. [21], this equation has been firstly
studied for integrability and infinite symmetries by Hann–Yu and Yi–Xin [9], Bäcklund
transformations related to truncated Painlevé analysis have been used to construct
rich variety of soliton solutions [12,19,25] and variety of other techniques are used to
investigate constant coefficient Broer–Kaup equation [1,5,7,14,26,27,30]. Beside this,
the variable coefficient Broer–Kaup equation (1.1) has been investigated for soliton
fission and fusion phenomena [6, 8] and exact solutions have been constructed using
several other techniques [13,15,28,32].

Nevertheless, in present work we do not intend to outcast existing methodologies
for finding exact solutions but in wake of Ref. [16], a same meromorphic structure
of solutions is used in each method, so by “Eremenko” theorem these methods can
not give new solutions or results. However, we believe that the Riccati equation
mapping method is simplest of all methodologies presented so far and this method
has never been applied to variable coefficient Broer–Kaup equation (1.1) for traveling
wave solutions.

2. Riccati equation mapping method

In this section we would like introduce some basic steps of Riccati equation mapping
method. We assume a solution of equation (1.2) in the form

u(x, t) =
n∑

i=0

ai(t)ϕ
i(ξ), ξ = kx+ ly +

∫
τ(t)dt, (2.1)

where n is required to be positive integer which can be fixed by balancing highest
order linear derivative term with that of nonlinear derivative term in (1.2).
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However, it is possible that this n may not be positive in all cases of PDEs but still
those cases can be handled by making appropriate transformations in the given PDE.
It is easy to see that the order of nonlinear term uxuy or uux,y in (1.2) is 2n+ 2 and
of highest order linear term ux,x,y is n + 3, therefore on equating both these orders
we obtain n = 1.

The key point of this method is to take full advantage of Riccati equation by
introducing new function ϕ(ξ) as solution of Riccati equation

ϕ′(ξ) = r + pϕ(ξ) + qϕ2(ξ), (2.2)

r, p and q are real constants. In contrast to Ref. [34] where (2.2) is wrongly interpreted
as generalised Riccati equation whereas in this manuscript we prefer calling it as
Riccati equation only. Depending on the values of p, q and r the Riccati equation
(2.2) admits several types of solutions [34].

Differentiating (2.2) twice w.r.t. ξ we get

ϕ′′(ξ) = pr + p2ϕ (ξ) + 3 pqϕ (ξ)
2
+ 2 qϕ (ξ) r + 2 q2ϕ (ξ)

3
, (2.3)

ϕ′′′(ξ) = p2r + p3ϕ (ξ) + 7 p2qϕ (ξ)
2
+ 8 pqϕ (ξ) r + 12 pq2ϕ (ξ)

3
+ 2 qr2

+ 8 q2rϕ (ξ)
2
+ 6 q3ϕ (ξ)

4
. (2.4)

Using repeated derivatives (2.2), (2.3) and (2.4) in (2.1) and keeping in mind that
n = 1, we have

ux = a1 (t) qkϕ (ξ)
2
+ a1 (t) pkϕ (ξ) + a1 (t) rk, (2.5a)

uy = a1 (t) qlϕ (ξ)
2
+ a1 (t) plϕ (ξ) + a1 (t) rl, (2.5b)

ut,y =2 a1 (t) q
2lτ (t)ϕ (ξ)

3
+ (3 a1 (t) pqlτ (t) + a′1 (t) ql)ϕ (ξ)

2

+
(
a′1 (t) pl + a1 (t)

(
p2 + 2 qr

)
lτ (t)

)
ϕ (ξ)

+ a1 (t) prlτ (t) + a′1 (t) rl, (2.5c)

ux,y =2 a1 (t) q
2lkϕ (ξ)

3
+ 3 a1 (t) pqlkϕ (ξ)

2

+ a1 (t)
(
p2 + 2 qr

)
lkϕ (ξ) + a1 (t) prlk, (2.5d)

ux,x,y =6 a1 (t) q
3lk2ϕ (ξ)

4
+ 12 a1 (t) pq

2lk2ϕ (ξ)
3

+ a1 (t)
(
3 p2q + 4 q

(
p2 + 2 qr

))
lk2ϕ (ξ)

2
,

+ pa1 (t)
(
p2 + 8 qr

)
lk2ϕ (ξ) + ra1 (t)

(
p2 + 2 qr

)
lk2. (2.5e)

On substituting (2.1) and (2.5) in (1.2) and equating coefficients of powers of ϕ(ξ) to
zero yields the following set of algebraic equations:

6 b (t) a1 (t) k
2lq3 + 6 b (t) a1 (t)

2
klq2 = 0, (2.6a)

12 b (t) a1 (t) k
2lpq2 + 10 b (t) a1 (t)

2
klpq + 4 b (t) a1 (t) a0 (t) klq

2

− 2 a1 (t) τ (t) lq
2 = 0, (2.6b)

7 b (t) a1 (t) k
2lp2q + 8 b (t) a1 (t) k

2lq2r + 4 b (t) a1 (t)
2
klp2

+ 8 b (t) a1 (t)
2
klqr + 6 b (t) a1 (t) a0 (t) klpq
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− 3 a1 (t) τ (t) lpq − a′1 (t) lq = 0, (2.6c)

b (t) a1 (t) k
2lp3 + 8 b (t) a1 (t) k

2lpqr + 6 b (t) a1 (t)
2
klpr

+ 2 b (t) a1 (t) a0 (t) klp
2 + 4 b (t) a1 (t) a0 (t) klqr

− a1 (t) τ (t) lp
2 − 2 a1 (t) τ (t) lqr − a′1 (t) lp = 0, (2.6d)

b (t) a1 (t) lk
2p2r + 2 b (t) a1 (t) lk

2qr2 + 2 b (t) a1 (t)
2
klr2

+ 2 b (t) a1 (t) lka0 (t) pr

− a1 (t) lτ (t) pr − a′1 (t) lr = 0. (2.6e)

Solving algebraic equations (2.6), we obtain:

a0(t) =
−b (t) k2p+ τ (t)

2b (t) k
, a1(t) = −kq, (2.7)

where τ(t) are arbitrary function.
Based on different values of p, q and r the Riccati equation (2.2) admits 27 kink,

soliton like and periodic solutions as mentioned in Ref. [34], those solutions are re-
written hereinafter correcting several typing errors. Hence, via expression (2.1) the
variable coefficient Broer-Kaup equation (1.2) admits abundant new exact solutions:

Case 2.1. When δ = p2 − 4pq > 0 and pq ̸= 0, then (1.2) admits kink and soliton
like solutions

u1 =
τ (t)

2kb (t)
+

k

2

[
√
δ tanh

(√
δ

2
ξ

)]
,

u2 =
τ (t)

2kb (t)
+

k

2

[
√
δ coth

(√
δ

2
ξ

)]
,

u3 =
τ (t)

2kb (t)
+

√
δk

2

[
tanh

(√
δ ξ
)
± i sech

(√
δξ
)]

,

u4 =
τ (t)

2kb (t)
+

√
δk

2

[
coth

(√
δ ξ
)
± i csch

(√
δξ
)]

,

u5 =
τ (t)

2kb (t)
+

√
δk

4

[
tanh

(√
δ

4
ξ

)
+ i coth

(√
δ

4
ξ

)]
,

u6 =
τ (t)

2kb (t)
− k

2

[√
(A2 +B2) (δ)−A

√
δ cosh

(√
δξ
)

A sinh
(√

δξ
)
+B

]
,

u7 =
τ (t)

2kb (t)
+

k

2

[√
(B2 −A2) (δ) +A

√
δ sinh

(√
δξ
)

A cosh
(√

δξ
)
+B

]
,
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where constants A and B are such that B2 −A2 > 0.

u8 =
τ (t)

2kb (t)
− kp

2
−

2qrk cosh
(√

δ
2 ξ
)

√
δ sinh

(√
δ
2 ξ
)
− p cosh

(√
δ
2 ξ
) ,

u9 =
τ (t)

2kb (t)
− kp

2
+

2qrk sinh
(√

δ
2 ξ
)

p sinh
(√

δ
2 ξ
)
−

√
δ cosh

(√
δ
2 ξ
) ,

u10 =
τ (t)

2kb (t)
− kp

2
−

2qrk cosh
(√

δξ
)

√
δ sinh

(√
δξ
)
− p cosh

(√
δξ
)
± i

√
δ
,

u11 =
τ (t)

2kb (t)
− kp

2
−

2qrk sinh
(√

δξ
)

−p sinh
(√

δξ
)
+
√
δ cosh

(√
δξ
)
±
√
δ
,

u12 =
τ (t)

2kb (t)
− kp

2
−

4qrk sinh
(√

δ
4 ξ
)
cosh

(√
δ
4 ξ
)

−2p sinh
(√

δ
4 ξ
)
cosh

(√
δ
4 ξ
)
+ 2

√
δ cosh2

(√
δ
4 ξ
)
−
√
δ
,

where ξ = kx+ ly +
∫
τ(t) dt and τ(t) is arbitrary function.

Case 2.2. When p2 − 4qr < 0 and pq ̸= 0, then (1.2) admits periodic solutions

u13 =
τ (t)

2kb (t)
− k

√
−δ

2
tan

(√
−δ

2
ξ

)
,

u14 =
τ (t)

2kb (t)
+

k
√
−δ

2
cot

(√
−δ

2
ξ

)
,

u15 =
τ (t)

2kb (t)
− k

√
−δ

2

[
tan

(√
−δξ

)
± sec

(√
−δξ

)]
,

u16 =
τ (t)

2kb (t)
+

k
√
−δ

2

[
cot
(√

−δξ
)
± csc

(√
−δξ

)]
,

u17 =
τ (t)

2kb (t)
− k

√
−δ

4

[
tan

(√
−δ

4
ξ

)
− cot

(√
−δ

4
ξ

)]
,

u18 =
τ (t)

2kb (t)
− k

2

[√
(A2 −B2) (−δ)−A

√
−δ cos

(√
−δξ

)
A sin

(√
−δξ

)
+B

]
,

u19 =
τ (t)

2kb (t)
+

k

2

[√
(A2 −B2) (−δ) +A

√
−δ cos

(√
−δξ

)
A sin

(√
−δξ

)
+B

]
,
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where constants A and B are such that A2 −B2 > 0.

u20 =
τ (t)

2kb (t)
− kp

2
+

2qrk cos
(√

−δ
2 ξ

)
√
−δ sin

(√
−δ
2 ξ

)
+ p cos

(√
−δ
2 ξ

) ,
u21 =

τ (t)

2kb (t)
− kp

2
−

2qrk sin
(√

−δ
2 ξ

)
−p sin

(√
−δ
2 ξ

)
+

√
−δ cos

(√
−δ
2 ξ

) ,
u22 =

τ (t)

2kb (t)
− kp

2
+

2qrk cos
(√

−δξ
)

√
−δ sin

(√
−δξ

)
+ p cos

(√
−δξ

)
±
√
−δ

,

u23 =
τ (t)

2kb (t)
− kp

2
−

2qrk sin
(√

−δξ
)

−p sin
(√

−δξ
)
+
√
−δ cos

(√
−δξ

)
±

√
−δ

,

u24 =
τ (t)

2kb (t)
− kp

2

−
4qrk sin

(√
−δ
4 ξ

)
cos
(√

−δ
4 ξ

)
−2p sin

(√
−δ
4 ξ

)
cos
(√

−δ
4 ξ

)
+ 2

√
−δ cos2

(√
−δ
4 ξ

)
−
√
−δ

,

where ξ = kx+ ly +
∫
τ(t) dt and τ(t) is arbitrary function.

Case 2.3. When r = 0 and pq ̸= 0, then equation (1.2) admits the following solutions

u25 =
τ (t)

2kb (t)
− kp

2
+

pd1k

d1 + cosh(pξ)− sinh(pξ)
,

u26 =
τ (t)

2kb (t)
− kp

2
+

pk(cosh(pξ) + sinh(pξ))

d1 + cosh(pξ) + sinh(pξ)
,

where ξ = kx+ ly +
∫
τ(t) dt and τ(t) is arbitrary function.

Case 2.4. When q ̸= 0 and r = p = 0, then equation (1.2) admits a rational solution

u27 =
τ (t)

2kb (t)
+

qk

qξ + d2
, (2.8)

where ξ = kx + ly +
∫
τ(t) dt and τ(t) is arbitrary function. Further, we want to

remark here that the rational solution (2.8) bears similarity with rational solution
reported in [17].

By invoking the transformation v = uy, we have been able to construct several
new explicit exact solutions for variable coefficient (2+1)-dimensional Broer–Kaup
equations (1.1). Besides enriching the solution structure of Broer–Kaup system (1.1)
we have demonstrated the effectiveness of Riccati equation mapping method.

3. Conclusion

The variable coefficient Broer–Kaup system (1.1) which has been obtained as inte-
grable system by virtue of symmetry constraints of Kadomtsev–Petviashvili equation
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has many physical applications, including those in nonlinear optics, plasma physics,
statistical physics, we have consider its variable coefficient version in order to incorpo-
rate more realistic physical phenomena. The Riccati equation mapping method has
been successfully applied to Broer–Kaup system to construct several explicit exact
solutions. To best of our knowledge these solutions have never been reported before
and we believe that these solutions might add new meanings to understandings of the
underlying physical phenomena in a better way.
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[17] S. Kumar, K. Singh, and R. Gupta, Painlevé analysis, Lie symmetries and exact solutions for

(2+ 1)-dimensional variable coefficients Broer–Kaup equations, Communications in Nonlinear
Science and Numerical Simulation, 17 (2012), 1529–1541.



CMDE Vol. 3, No. 3, 2015, pp. 192-199 199

[18] B. Li and Y. Ma, The non-traveling wave solutions and novel fractal soliton for the (2+ 1)-
dimensional Broer–Kaup equations with variable coefficients, Communications in Nonlinear
Science and Numerical Simulation, 16 (2011), 144–149.

[19] H. Li and S. Lou, Rich Localized Coherent Structures of the (2+ 1)-Dimensional BKK Equation,
International Journal of Modern Physics B, 17 (2003), 4247–4251.

[20] S. Liu, Z. Fu, S. Liu, and Q. Zhao, Jacobi elliptic function expansion method and periodic wave
solutions of nonlinear wave equations , Physics Letters A, 289 (2001), 69–74.

[21] S. Y. Lou and X. B. Hu, Infinitely many Lax pairs and symmetry constraints of the KP equation,
Journal of Mathematical Physics, 38 (1997), 6401–6427.

[22] W. Malfliet, Solitary wave solutions of nonlinear wave equations, American Journal of Physics,
60 (1992), 650–654.

[23] W. Malfliet and W. Hereman, The tanh method: I. Exact solutions of nonlinear evolution and
wave equations, Physica Scripta, 54 (1996), 563–568.

[24] A. M.J. and P. Clarkson, Solitons, Nonlinear Evolution Equation and Inverse Scattering, ,

Cambridge University Press, Cambridge, 1999.
[25] J. ping Ying and S. yue Lou, Abundant coherent structures of the (2+l)-dimensional Broer-

Kaup-Kupershmidt equation, Z. Naturforsch, 56 (2000), 619–625.
[26] L.-N. Song, Q. Wang, Y. Zheng, and H.-Q. Zhang, A new extended Riccati equation rational

expansion method and its application, Chaos, Solitons & Fractals, 31 (2007), 548–556.
[27] Q. Wang and Y. Chen, A multiple Riccati equations rational expansion method and novel solu-

tions of the Broer–Kaup–Kupershmidt system, Chaos, Solitons & Fractals, 30 (2006), 197–203.
[28] Y.-Y. Wang and C.-Q. Dai, Elastic interactions between multi-valued foldons and anti-foldons

for the (2+ 1)-dimensional variable coefficient Broer–Kaup system in water waves, Nonlinear
Dynamics, 74 (2013), 429–438.

[29] Z. Y. Yan and H. Q. Zhang, Symbolic computation and new families of exact soliton-like so-
lutions to the integrable Broer-Kaup (BK) equations in (2+ 1)-dimensional spaces, Journal of

Physics A: Mathematical, Nuclear and General, 34 (2001), 1785–1792.
[30] E. Yomba, The extended Fan’s sub-equation method and its application to KdV–MKdV, BKK

and variant Boussinesq equations, Physics Letters A, 336 (2005), 463–476.

[31] V. E. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid,
Journal of Applied Mechanics and Technical Physics, 9 (1968), 190–194.

[32] S. Zhang and H.-Q. Zhang, An Exp-function method for new N-soliton solutions with arbitrary
functions of a (2+ 1)-dimensional vcBK system, Computers & Mathematics with Applications,

61 (2011), 1923–1930.
[33] Y. Zhou, M. Wang, and Y. Wang, Periodic wave solutions to a coupled KdV equations with

variable coefficients, Physics Letters A, 308 (2003), 31–36.
[34] S. D. Zhu, The generalizing Riccati equation mapping method in non-linear evolution equation:

application to (2+ 1)-dimensional Boiti–Leon–Pempinelle equation, Chaos, Solitons & Fractals,
37 (2008), 1335–1342.


