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Abstract In this article, we investigate sufficient conditions for existence of maximal and
minimal solutions to a coupled system of highly nonlinear differential equations of

fractional order with mixed type boundary conditions. To achieve this goal, we
apply monotone iterative technique together with the method of upper and lower
solutions. Also an error estimation is given to check the accuracy of the method.

We provide an example to illustrate our main results.
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1. Introduction

In the last few decades, fractional calculus has attracted the attention of many

researchers towards itself due to its many applications in various field of science and

technology. It is mainly found that the tools of fractional calculus are more strong

and more practical as compare to classical calculus in the mathematical modeling of

various phenomena in the applied nature. These applications are found in various

disciplines of science and engineering such as dynamics, aerodynamics, electrostatics,

chemistry, biology , physics and biophysics, economics, control theory, signal and im-

age processing, polymers rheology, thermodynamics and biomedical science, for more

detail the reader should see the books [6, 9, 11, 12, 16, 18], and the references therein.

Recently the area of fractional calculus involve differential equations of arbitrary order

has gained considerable attention, because it has a lot of applications in almost every
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field of applied sciences, we refer to [3, 4, 23, 24, 27] etc, for some of its applications.

The work related to the existence and uniqueness of positive solutions to differential

equations has been studied by many researchers by means of some classical fixed point

theorems, see [4, 7, 27, 28]. The researchers are taking interest in the study of cou-

pled systems of boundary value problems for non linear fractional order differential

equations and large number of research articles can be found in the literature dealing

with existence and uniqueness of solutions, [1,2,8,22] etc. For multiplicity of positive

solutions, many techniques are available in literature among them the monotone iter-

ative techniques is a powerful tool. The method of upper and lower solutions and the

monotone iterative techniques for existence and approximation of solutions to initial

and boundary value problems corresponding to ordinary/partial differential equations

are well studied. However, for fractional differential equations(FDEs), the scheme is

in its initial stage and only few articles can be found in the literature dealing with

upper and lower solutions, we refer [17, 19–21, 25, 26, 30, 31] for some of the results.

Such technique when use together with the method of upper and lower solutions fruit-

ful results may be obtained. Zhang [29], investigated the existence and uniqueness of

solutions for the following initial value problems of FDEs{
Dα

0+u(t) = f(t, u(t)), t ∈ (0, T ],

t1−αu(t)|t=0 = u0,
(1.1)

where 0 < T < ∞ and Dα is the Riemann-liouville fractional derivative of order

α ∈ (0, 1). G.Wang et al [25], developed sufficient conditions for the existence of

upper and lower solutions by using monotone iterative techniques together with the

method of upper and lower solutions for the following coupled system of FDEs
Dα

0+u(t) = f(t, u(t), v(t)), t ∈ (0, T ],

Dα
0+v(t) = g(t, v(t), u(t)), t ∈ (0, T ],

t1−αu(t)|t=0 = x0, t1−αv(t)|t=0 = y0,

(1.2)

where 0 < T < ∞, and f, g : [0, T ] × R × R → R, x0, y0 ∈ R and x0 ≤ y0, Dα is

the Riemann-liouville fractional derivative of order 0 < α ≤ 1. X.Zhang et al [17],

obtained sufficient conditions for the multiplicity of positive solutions for the following

boundary value problems of FDEs of the form −Dα
t x(t) = f(t, x(t),−Dβ

t v(t)), t ∈ (0, 1),

Dβ
t x(0) = 0, Dγ

t x(1) = Σp−2
j=1ajD

γ
t x(ξj),

(1.3)



CMDE Vol. 3, No. 3, 2015, pp. 163-176 165

where 1 < α ≤ 2, α − β > 1, 0 < β ≤ γ < 1, 0 < ξ1 < ξ2 < ... < ξp−2 < 1, aj ∈
[0,+∞) with Σp−2

j=1ajξ
α−γ−1
j < 1 and f : (0, 1)× (0,+∞)× (−∞,+∞) → [0,+∞) is

continuous and singular at t = 0, 1 and Dα
t , is the Riemann-Liouville fractional de-

rivative. In recent years, the monotone iterative techniques together with the method

of upper and lower solutions for coupled system of boundary value problems of frac-

tional order differential-integral equations have attracted some attention. Existence

of positive solutions for Neumann boundary value problems(NBVP) for fractional or-

der differential equations has been rarely studied and very few articles are found in

literature. Z.Hu et al [30], used coincidence degree theory to established sufficient

conditions for the existence of positive solution for the following coupled systems of

(NBVP)
Dα

0+u(t) = f(t, v(t), v′(t)), t ∈ (0, 1),

Dβ
0+v(t) = g(t, u(t), u′(t)), t ∈ (0, 1),

u′(0) = u′(1) = 0, v′(0) = v′(1) = 0,

(1.4)

where 1 < α, β ≤ 2 and f, g : [0, 1] × R2 → R is continuous and Dα
+0, D

β
+0 is the

standard Riemann-Liouville fractional derivative.

Motivated by the above mentioned work, we discuss the following coupled system of

nonlinear fractional order differential-integral equations with mixed type Neumann

boundary conditions of the form
Dαu(t) + f(t, v(t), Iβ−2v(t), Iβ−1v(t), Iβv(t)) = 0, t ∈ I = [0, 1],

Dβv(t) + g(t, u(t), Iα−2u(t), Iα−1u(t), Iαu(t)) = 0, t ∈ I = [0, 1],

u(0) = 0, and u′(0) = u′(1) = 0, v(0) = 0, and v′(0) = v′(1) = 0,

(1.5)

where 2 < α, β ≤ 3 and u, v ∈ C[0, 1] and the non-linear functions f, g : [0, 1]×R4 →
R satisfy the Caratheodory conditions. Also Dα, Dβ , Iα, Iβ denote fractional order

derivative and fractional order integrations of order α, β respectively in Riemann-

Liouville sense. We apply the monotone iterative technique together with the method

of upper and lower solutions to obtain sufficient conditions for existence and approxi-

mation of multiple solutions. An error estimation is also derive for consistency of the

method. Further we provide an example to illustrated our results.

Rest of our paper is organize as in section 2, we provide some basic results and lemmas

need for this study. Section 3 is devoted to the main result, while in sections 4, we

provide an examples and a short conclusion.
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2. Preliminaries

We recall some basic definitions and known results from fractional calculus, func-

tional analysis and measure theory, which can be found in [9, 12,16,18,19,26,31].

Definition 2.1. The Riemann-Liouville fractional integral of order α ∈ R+ of a

function h ∈ L([0, 1],R) is defined by

Iαt h(t) =
1

Γ(α)

∫ t

0

(t− s)α−1h(s) ds,

provided the integral converges.

Definition 2.2. The Riemann-Liouville fractional order derivative of a function h on

the interval [0, 1] is defined by

Dα
t h(t) =

1

Γ(n− α)

(
d

dt

)n ∫ t

0

(t− s)n−α−1h(s) ds,

where n = [α] + 1 and [α] represents the integer part of α.

Definition 2.3. Let X, Y be Banach spaces satisfying the property of partial order

and C ⊂ X. An operator T : C → Y is said to be increasing if for all x, y ∈ C with

x ≤ y implies Tx ≤ Ty. Similarly T is decreasing if for all x, y ∈ C with x ≥ y

implies Tx ≥ Ty.

Definition 2.4. A function α∗ ∈ C is said to a minimal solution of the operator

equation (I − T )z = 0 if (I − T )α∗ ≤ 0 and β∗ ∈ C is said to an maximal solution of

(I − T )z = 0 if (I − T )β∗ ≥ 0.

Definition 2.5. [31]. A functions f(t, x, y) : [0, 1] × R × R → R is said to satisfies

the Carathodeory conditions, if the following hold

(i) f(t, x, y, u, v) is Lebesgue measurable with respect to t for each x, y, u, v ∈ R,
(ii) f(t, x, y, u, v) is continuous for x, y, u, v for all most every t ∈ [0, 1].

Lemma 2.6. [31].Let X be a partial order Banach space and xn, yn ∈ X such that

xn ≤ yn, n ∈ Z+. If xn → x and yn → y, then x ≤ y.

Lemma 2.7. [3]. For u ∈ C(0, 1) ∩ L(0, 1), the following result holds

IαDαu(t) = u(t) + c1t
α−1 + c2t

α−2 + c3t
α−3 + · · ·+ cnt

α−n,

where ci ∈ R, i = 1, 2, . . . , n are arbitrary constants.

Let X = C[0, 1], then X is a Banach space endowed with the norm ∥x∥ =

maxt∈[0,1] |x(t)|. A set C ⊂ X is called cone in X by defining a partial ordering
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in X by x ≤ y if and only if y − x ∈ C, such a Banach space is called a partial

order Banach space. Let x0, x
∗
0 be lower and upper solutions respectively of (1.5),

with x0 ≤ x∗
0, we define a closed set Ω = [x0, x

∗
0] required for further process. In this

papers we need the following assumptions :

(A1) f, g : [0, 1]× R4 → R satisfies Carathodeory conditions,

(A2) For any xi, yi ∈ C with xi ≤ yi(i = 1, 2, 3, 4), there exist constantsAi, Bi(i =

1, 2, 3, 4) > 0 such that

0 ≤ f(t, y1, y2, y3, y4)− f(t, x1, x2, x3, x4)

≤ A1(y1 − x1) +A2(y2 − x2) +A3(y3 − x3) +A4(y4 − x4), t ∈ [0, 1],

0 ≤ g(t, y1, y2, y3, y4)− g(t, x1, x2, x3, x4)

≤ B1(y1 − x1) + B2(y2 − x2) + B3(y3 − x3) + B4(y4 − x4), t ∈ [0, 1],

(A3) Let (u0, v0) and (u∗
0, v

∗
0) ∈ X×X are lower and upper solution respectively

of (1.5), then u0 ≤ u∗
0 and v0 ≤ v∗0 .

3. Main Results

Theorem 3.1. Under the assumption (A1) and Lemma (2.7), and for the integral

representation of the system of Mixed Neumann type boundary value problems (1.5)

is given by
u(t) =

∫ 1

0

K1(t, s)f(s, v(s), I
β−2v(s), Iβ−1v(s), Iβv(s))ds, t ∈ [0, 1],

v(t) =

∫ 1

0

K2(t, s)g(s, u(s), I
α−2u(s), Iα−1u(s), Iαu(s))ds, t ∈ [0, 1],

(3.1)

where Ki(t, s), i = 1, 2 are given by

K1(t, s) =
1

Γ(α)

{
tα−1(1− s)α−2 − (t− s)α−1, 0 ≤ s ≤ t ≤ 1,

tα−1(1− s))α−2, 0 ≤ t ≤ s ≤ 1,
(3.2)

K2(t, s) =
1

Γ(β)

{
tβ−1(1− s)β−2 − (t− s)β−1, 0 ≤ s ≤ t ≤ 1,

tβ−1(1− s))β−2, 0 ≤ t ≤ s ≤ 1.
(3.3)

Proof. Applying Iα on the first equation of the system (1.5), and using Lemma (2.7),

we get

u(t) = −Iαf(t, v(t), Iβ−2v(t), Iβ−1v(t), Iβv(t))+c1t
α−1+c2t

α−2+c3t
α−3, c1, c2, c3 ∈ R.

(3.4)
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Since 2 < α ≤ 3, one has n = 3 due to Lemma (2.7) which implies that u(t) is singular

at 0, also as u ∈ C[0, 1] as in [11,12,18] which implies that c3 = 0 in (3.4). Moreover

by means of boundary conditions u′(0) = 0, and u′(1) = 0 we get

c2 = 0, and c1 =
1

Γ(α)

∫ 1

0

(1− s)α−2f(s, v(s), Iβ−2v(s), Iβ−1v(s), Iβv(s))ds.

Hence, (3.4) can be rewritten as

u(t) =
tα−1

Γ(α)

∫ 1

0

(1− s)α−2f(s, v(s), Iβ−2v(s), Iβ−1v(s), Iβv(s))ds

− 1

Γ(α)

∫ t

0

(t− s)α−1f(s, v(s), Iβ−2v(s), Iβ−1v(s), Iβv(s))ds

=

∫ 1

0

K1(t, s)f(s, v(s), I
β−2v(s), Iβ−1v(s), Iβv(s))ds.

Similarly, applying Iβ on the second equation of the system (1.5) and Lemma (2.7),

we get the second part of the system of integral equations (3.1)

v(t) =
tβ−1

Γ(β)

∫ 1

0

(1− s)β−2g(s, u(s), Iα−2u(s), Iα−1u(s), Iαu(s))ds

− 1

Γ(β)

∫ t

0

(t− s)β−1g(s, u(s), Iα−2u(s), Iα−1u(s), Iαu(s))ds

=

∫ 1

0

K2(t, s)g(s, u(s), I
α−2u(s), Iα−1u(s), Iαu(s))ds.

�

Lemma 3.2. The Green’s functions Ki(t, s)(i = 1, 2), satisfy the following properties

which are required in our results.

(P1) K1(t, s) ≥ 0, K2(t, s) ≥ 0 for all t, s ∈ [0, 1].

(P2)
∫ 1

0
K1(t, s)ds ≤ 1

(α−1)Γ(α+1) ,
∫ 1

0
K2(t, s)ds ≤ 1

(β−1)Γ(β+1) ), for all t ∈ [0, 1].

Proof. (P1) : Since s, t ∈ [0, 1] and 2 < α ≤ 3, so one has easily observe that tα−1(1−
s)α−2 ≥ 0 and also

tα−1(1− s)α−2 ≥ tα−1(1− s)α−2(1− s) = tα−1(1− s)α−1.

On the other hand, s ≥ ts from which we have (t − s)α−1 ≤ (t − ts)α−1 = tα−1(1 −
s)α−1. Thus we have

tα−1(1− s)α−2 − (t− s)α−1 ≥ tα−1(1− s)α−1 − tα−1(1− s)α−1 = 0.
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Hence K1(t, s) ≥ 0,∀ s, t ∈ [0, 1]. Similarly we can show that K2(t, s) ≥ 0,∀ s, t ∈ [0, 1].

(P2) :

∫ 1

0

K1(t, s)ds =

∫ 1

0

tα−1(1− s)α−2

Γ(α)
ds−

∫ t

0

(t− s)α−1

Γ(α)
≤ 1

(α− 1)Γ(α+ 1)
.

Similarly, we have
∫ 1

0
K2(t, s)ds ≤ 1

(β−1)Γ(β+1) . �

We write the system of integral equations (3.1) in the following equivalent form of

integral equation

u(t) =
∫ 1

0
K1(t, s)f(s, v(s), I

β−2v(s), Iβ−1v(s), Iβv(s))ds

=
∫ 1

0
K1(t, s)f

(
s,
∫ 1

0
K2(s, x)g(x, u(x), I

α−2u(x), Iα−1u(x), Iαu(x))dx,

Iβ−2
[∫ 1

0
K2(s, x)g(s, u(x), I

α−2u(x), Iα−1u(x), Iαu(x))dx
]
,

Iβ−1
[∫ 1

0
K2(s, x)g(s, u(x), I

α−2u(x), Iα−1u(x), Iαu(x))dx
]
,

Iβ
[∫ 1

0
K2(s, x)g(s, u(x), I

α−2u(x), Iα−1u(x), Iαu(x))dx
])

ds.

(3.5)

and define an operator T : Ω → X by

Tu(t) =
∫ 1

0
K1(t, s)f

(
s,
∫ 1

0
K2(s, x)g(x, u(x), I

α−2u(x), Iα−1u(x), Iαu(x))dx,

Iβ−2
[∫ 1

0
K2(s, x)g(s, u(x), I

α−2u(x), Iα−1u(x), Iαu(x))dx
]
,

Iβ−1
[∫ 1

0
K2(s, x)g(s, u(x), I

α−2u(x), Iα−1u(x), Iαu(x))dx
]
,

Iβ
[∫ 1

0
K2(s, x)g(s, u(x), I

α−2u(x), Iα−1u(x), Iαu(x))dx
])

ds.

(3.6)

Then, the integral equation (3.6) can be written as an operator equation

(I − Tu)(t) = 0, t ∈ [0, 1], (3.7)

and solutions of the operator equation (3.7) are the solutions of the integral equa-

tion (3.1), that is, fixed points of T, are the corresponding solutions of integral equa-

tions(3.1). In view of A2, for u, v ∈ Ω with u ≤ v, we have Iα−iu ≤ Iα−iv(i = 0, 1, 2),
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as K2(t, s) ≥ 0, we get

Tu(t) =
∫ 1

0
K1(t, s)f

(
s,
∫ 1

0
K2(s, x)g(s, u(x), I

α−2u(x), Iα−1u(x), Iαu(x))dx,

Iβ−2
[∫ 1

0
K2(s, x)g(s, u(x), I

α−2u(x), Iα−1u(x), Iαu(x))dx
]
,

Iβ−1
[∫ 1

0
K2(s, x)g(s, u(x), I

α−2u(x), Iα−1u(x), Iαu(x))dx
]
,

Iβ
[∫ 1

0
K2(s, x)g(s, u(x), I

α−2u(x), Iα−1u(x), Iαu(x))dx
])

ds

≤
∫ 1

0
K1(t, s)f

(
s,
∫ 1

0
K2(s, x)g(s, v(x), I

α−2v(x), Iα−1v(x), Iαv(x))dx,

Iβ−2
[∫ 1

0
K2(s, x)g(s, v(x), I

α−2v(x), Iα−1v(x), Iαv(x))dx
]
,

Iβ−1
[∫ 1

0
K2(s, x)g(s, v(x), I

α−2v(x), Iα−1v(x), Iαv(x))dx
]
,

Iβ
[∫ 1

0
K2(s, x)g(s, v(x), I

α−2v(x), Iα−1v(x), Iαv(x))dx
])

ds = Tv(t),

(3.8)

which implies that T is nondecreasing operator.

Use the notation

∆ = A1B1

(β−1)Γ(β+1) +
A1B2

(β−1)Γ(α−1)Γ(β+1) +
A1B3

(β−1)ΓαΓ(β+1)

+ A1B4

ΓαΓβΓ(β+1)Γ(α+1) +
A2B1

ΓβΓ(β+1) +
A2B2

ΓβΓ(α−1)Γ(β+1)

+ A2B3

(β−1)Γ(β+1) +
A2B4

Γβ(β−1)Γ(β+1) +
A3B1

(β−1)ΓβΓ(β+1)

+ A3B2

(β−1)ΓβΓ(β+1)Γ(α−1)Γ(β+1) +
A3B3

(β−1)ΓβΓαΓ(β+1)

+ A3B4

ΓαΓβΓ(β+1)Γ(α+1) +
A4B1

(β−1)Γ2(β+1)

+ A4B2

(β−1)Γ(α)Γ2(β+1) +
A4B3

(β−1)Γ(α+1)Γ2(β+1) +
A4B4

(β−1)Γ(α+1)Γ2(β+1) .

Theorem 3.3. Under the assumptions (A1)−(A3) and ∆ < 1, then there exists min-

imal and maximal solutions and a monotone sequence of solutions of linear problems

converging uniformly to a solution of the nonlinear integral equation (3.6).

Proof: In view of (A1) and (A2), the operator T is continuous and nondecreasing.

Assume that µ, ν ∈ X are lower and upper solutions of (3.7) such that µ ≤ ν

on [0, 1] Choose u0 = µ, using the definition of lower and upper solutions and the

nondecreasing property of T , we obtain

u0 ≤ Tu0 ≤ Tν ≤ ν, that is, u0 ≤ u1 ≤ ν on [0, 1],

where u1 is a solution of the linear problem u1 = Tu0. Again the nondecreasing

property of T implies that

Tu0 ≤ Tu1 ≤ Tν ≤ ν, that is, u1 ≤ u2 ≤ ν on [0, 1],
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where u2 is a solution of the linear problem u2 = Tu1. Continuing in the above

fashion, we get a bounded monotone sequence {un} of solutions satisfies

u0 ≤ u1 ≤ u2 ≤ ...un−1 ≤ un ≤ ν on [0, 1], (3.9)

where un is a solution of the linear problem un = Tun−1. The monotonicity and

boundedness of the sequence implies the existence of u ∈ Ω such that un → u as

n → ∞. Hence, passing to the limit n → ∞, the equation un = Tun−1 implies that

u = Tu, that is, u is a solution of the integral equation(3.6). Moreover from (A3) and

for any u, v ∈ Ω with Iα−iu ≤ Iβ−iv, i = 0, 1, 2, and

g(t, u, Iα−2u(t), Iα−1u(t), Iαu(t)) ≤ g(t, v(t), Iα−2v(t), Iα−1v(t), Iαv(t)), K2(t, s) ≥ 0,

we obtain ∥∥∥∥f(t, ∫ 1

0
K2(t, x)g(x, v(x), I

α−1v(x), Iα−2v(x), Iαv(x))dx,

Iβ−2
[∫ 1

0
K2(t, x)g(x, v(x), I

α−1v(x), Iα−2v(x), Iαv(x))
]
,

Iβ−1
[∫ 1

0
K2(t, x)g(x, v(x), I

α−1v(x), Iα−2v(x), Iαv(x))dx
]
,

Iβ
[∫ 1

0
K2(t, x)g(x, v(x), I

α−1v(x), Iα−2v(x), Iαv(x))dx
])

−f

(
t,
∫ 1

0
K2(t, x)g(x, u(x), I

α−1u(x), Iα−2u(x), Iαu(x))dx,

Iβ−2
[∫ 1

0
K2(t, x)g(x, u(x), I

α−1u(x), Iα−2u(x), Iαu(x))dx
]
,

Iβ−1
[∫ 1

0
K2(t, x)g(x, u(x), I

α−1u(x), Iα−2u(x), Iαu(x))dx
]
,

Iβ
[∫ 1

0
K2(t, x)g(x, u(x), I

α−1u(x), Iα−2u(x), Iαu(x))dx
])∥∥∥∥

(3.10)

∥Tv − Tu∥ ≤ ∆∥v − u∥ (3.11)

Now from (3.9) and (3.11) we have

∥u2 − u1∥ = ∥Tu1 − Tu0∥ ≤ ∆∥u1 − u0∥,

∥u3 − u2∥ = ∥Tu2 − Tu1∥ ≤ ∆2∥u1 − u0∥,

∥u4 − u3∥ = ∥Tu3 − Tu2∥ ≤ ∆3∥u1 − u0∥,

. . . . . . . . . , .

From these results we have ∥un+1 − un∥ ≤ ∆n∥u1 − u0∥. So for any m,n ∈ Z+,we get

∥um+n − un∥ ≤ ∥um+n − um+n−1∥+ ∥um+n−1 − um+n−2∥+ · · ·+ ∥un+1 − un∥

≤ ∆n 1−∆m

1−∆
∥u1 − u0∥.
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(3.12)

For 0 < ∆ < 1, we have ∥um+n − un∥ → 0, as n → ∞, therefore un is a cauchy

sequence in Ω. Let u(t) = limn→∞ un(t) ⇒ Tu = u. Thus (1.5) has a pair of solution

(u, v). Further if m → ∞ in (3.12) we have an error estimate for lower solutions

as ∥u − un∥ ≤ ∆n

1−∆∥u1 − u0∥. Define the error en = u − un, since un−1 ≤ un ⇒
u− un−1 ≥ u− un, which gives that en−1 ≥ en, hence en is monotonically decreasing

sequence which converges to its lower bound i.e

lim
n→∞

en = lim
n→∞

(u− un) = 0 ⇒ lim
n→∞

un = u.

Thus the error estimation for lower solution is

∥u− un∥ ≤ ∆n

1−∆
∥u1 − u0∥.

Similarly for initial iteration of upper solutions ν using u∗
0 = ν for (3.6) we get

u0 ≤ u1 ≤ u2 ≤ ... ≤ un ≤ ... ≤ u∗
n ≤ ... ≤ u∗

2 ≤ u∗
1 ≤ u∗

0 on [0, 1].

Similarly the error estimation for upper solution is given by

∥u∗
n − u∗∥ ≤ ∆n

1−∆
∥u∗

0 − u∗
1∥.

Further, we prove the existence of maximal and minimal solution of (1.5). Let (u0, v0)

and (u∗
0, v

∗
0) be minimal and maximal solutions of (1.5), for any w(t) ∈ Ω with Tw =

w, we obtain un ≤ w ≤ u∗
n, as T is increasing operator so we have Tun ≤ Tw ≤ Tu∗

n as

n → ∞ we get u(t) ≤ w(t) ≤ u∗(t).Which implies that u, u∗ are minimal and maximal

fixed point of operator T respectively. So there exist minimal and maximal solutions

of (1.5) in the form (u0, v0) and (u∗
0, v

∗
0) respectively. Hence proof is completed.

�

Theorem 3.4. Under the assumptions (A1) − (A3) and ∆ < 1, then the system of

of BVP (1.5) has a unique maximal and minimal solution .

Proof. Let x0, y0 ∈ X be lower and upper solution of operator equation Tu = u

respectively such that x0 ≤ Tx0 ≤ Ty0 ≤ y0, t ∈ [0, 1]. Therefore xn → x∗, yn →
y∗, n → ∞, also we have Tx∗ = x∗, T y∗ = y∗.

To prove uniqueness of solution i.e x∗ = u∗,then as u0 ≤ x∗ and due to increasing

property of T on Ω. We have un = Tnu0 ≤ Tnx∗, for each n ∈ Z+. Thus u0 ≤ u1 ≤
u2 ≤ ... ≤ x∗. By mathematical inductions and using ∆ < 1 we have ∥x∗ − u∗∥ =

∥Tnx∗ − Tnu0∥ ≤ ∆n∥x∗ − u0∥ → 0, (n → ∞) ⇒ u∗ = x∗, similarly v∗ = y∗. Thus

uniqueness of minimal and maximal solution has been followed for (1.5). �
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4. Example

Consider the following coupled system of boundary values problem

D2.5u(t) +
t2

16
v(t) sin(t) +

t3

16
I0.5v(t) +

(
(1− t)

4

)2

I1.5v(t)

+

(
1− t

4

)3

I2.5v(t) = 0, t ∈ [0, 1],

D2.5v(t) +

(
t

3
u(t) cos(t)

)3

+
t3

16
I0.5u(t) +

(
(1− t)2

25

)2

I1.5u(t)

+

(
(1− t)4

256

)3

I2.5u(t) = 0, t ∈ [0, 1],

u(0) = 0, and u′(0) = u′(1) = 0, v(0) = 0 and v′(0) = v′(1) = 0.

(4.1)

Solution: Here

f
(
t, v, Iβ−2v(t), Iβ−1v(t), Iβv(t)

)
=

t2

16
v(t) sin(t) +

t3

16
I0.5v(t)

+

(
(1− t)2

16

)2

I1.5v(t) +

(
1− t

4

)3

I2.5v(t),

g
(
t, u, Iα−2u(t), Iα−1u(t), Iαu(t)

)
=

t3

27
u(t) cos(t) +

t3

16
I0.5u(t)

+

(
(1− t)2

25

)2

I1.5u(t) +

(
(1− t)4

256

)3

I2.5u(t),

α = 2.5, β = 2.5. For any u(t) ≤ v(t) we have

0 ≤
(
f(t, v, I0.5v(t), I1.5v(t), I2.5v(t))− f(t, u, I0.5u(t), I1.5u(t), I2.5u(t))

)
,

and

0 ≤
(
g(t, v, I0.5v(t), I1.5v(t), I2.5v(t))− g(t, u, I0.5u(t), I1.5u(t), I2.5u(t))

)
,

it follows that

A1 =
1

16
, A2 =

1

16
, A3 =

1

16
, A4 =

1

64
, α = 2.5,

and

B1 =
1

27
, B2 =

1

64
, B3 =

1

25
, B4 =

1

16
, β = 2.5.

Let ua take (−1,−1) and (1, 1) as initial iteration for lower and upper solutions

respectively. Then one can easily calculate that ∆ = .02509 < 1, thus uniqueness

of maximal and minimal solutions has been followed followed. Clearly (0, 0) is the

unique solution. To obtain error estimations we give iterative sequences by taking n
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is large enough. Let us take n = 7, then

u(t) = u7(t),

v(t) =

∫ 1

0

K2(t, s)[(s
3
u7(s) cos(s)

)3

+
s3

16
I0.5u7(s) +

(
(1− s)2

25

)2

I1.5u7(s) +

(
(1− s)4

256

)3

I2.5u7(s)

]
ds

u∗(t) = u∗
7(t),

v∗(t) =

∫ 1

0

K2(t, s)[(s
3
u∗
7(s) cos(s)

)3

+
s3

16
I0.5u∗

7(s) +

(
(1− s)2

25

)2

I1.5u∗
7(s) +

(
(1− s)4

256

)3

I2.5u∗
7(s)

]
ds

e7 = ∥u− u7∥ ≤ ∆7

1−∆
∥u1(t)− u0(t)∥ ≤ ∆7

1−∆
max
t∈[0,1]

∥u1(t) + 1∥ ≈ 2.288× 10−12,

and similarly for upper solutions error estimation is

e7 = ∥u− u∗
7∥ ≤ ∆7

1−∆
∥u∗

1(t)− u∗
0(t)∥ ≤ ∆7

1−∆
max
t∈[0,1]

∥u∗
1(t)− 1∥ ≈ 1.88× 10−12.

5. Conclusion

In this article, we have successfully developed an iterative scheme for maximal and

minimal solutions to a coupled system of highly nonlinear fractional order differential

equations. Where the nonlinearities explicitly depend on the terms involving frac-

tional order integral which are very rarely studied. The concerned procedure has

been enriched by developing conditions for error estimation. More over with the help

of an example, we have verified the results been established in this article.
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