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Abstract In this paper, a collocation method for solving high-order linear partial differential
equations (PDEs) with variable coefficients under more general form of conditions is

presented. This method is based on the approximation of the truncated double expo-
nential second kind Chebyshev (ESC) series. The definition of the partial derivative

is presented and derived as new operational matrices of derivatives. All principles

and properties of the ESC functions are derived and introduced by us as a new basis
defined in the whole range. The method transforms the PDEs and conditions into

block matrix equations, which correspond to system of linear algebraic equations

with unknown ESC coefficients, by using ESC collocation points. Combining these
matrix equations and then solving the system yield the ESC coefficients of the solu-
tion function. Numerical examples are included to test the validity and applicability

of the method.
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1. Introduction

It is well known that the numerical methods have played an important role in

solving PDEs. Some of the well-known numerical methods are finite differences and

finite element methods [6,17]. Recently, various approximate methods were discussed,

such as differential transform method, Adomian decomposition method and Homo-

topy analysis method [3,8,11,13,15,18]. Furthermore, spectral methods are one of the

principal methods for solving differential equations. The main idea of spectral meth-

ods is to approximate the solutions of differential equations by means of truncated

series of orthogonal polynomials. The most used versions of spectral methods are

tau, collocation, and Galerkin methods [1, 5, 9]. One of the most important orthogo-

nal polynomials is Chebyshev polynomials. The well-known Chebyshev polynomials

of the second kind Un(x) [12] are orthogonal with respect to the weight-function

w(x) =
√

1− x2 on the interval [− 1, 1], and the recurrence relation is

U0(x) = 1, U1(x) = 2x, Un+1(x) = 2xUn(x)− Un−1(x), n ≥ 1.

Many studies of Chebyshev polynomials are considered on the first kind Tn(x). On the

other hand, in [10] and [14] a modified type of Chebyshev polynomials was proposed

as new alternative technique to the solutions of ordinary and partial differential equa-

tions given in whole domain. In their studies, the basis functions called exponential

Chebyshev functions, which are orthogonal on (−∞,∞) and are defined by

En(x) = Tn

(
ex − 1

ex + 1

)
,

where Tn(x) is the first kind Chebyshev polynomials. This kind of extension tackles

the problems over the whole real domain. In this paper we introduce a new type

of Chebyshev polynomials in the whole real range, called exponential second kind

Chebyshev (ESC) functions. The rest of the paper is organized as follows. In section

2, the definition and properties of ESC functions are listed, while in section 3 the form

of high-order linear non-homogeneous partial differential equations is presented. In

section 4, we formulated the fundamental matrix relation based on collocation points.

In section 5, method of solution is presented. Finally, section 6 contains numerical

illustrations and results that are compared with the exact solutions to demonstrate

the applicability and accuracy of the present method.
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2. Properties of double ESC functions

We introduce the definition of expotennial second kind Chebyshev ESC to be of

the form

EUn (x) = Un

(
ex − 1

ex + 1

)
, (2.1)

where the corresponding recurrencs relation is

EU0 (x) = 1, EU1 (x) = 2

(
ex − 1

ex + 1

)
,

EUn+1(x) = 2

(
ex − 1

ex + 1

)
EUn (x)− EUn−1(x).

In Basu [4], the expression Tr,s(x, y) = Tr(x) · Ts(y) has given which is a form of

Chebyshev polynomials. Mason et al. [12] have also used double Chebyshev polyno-

mials expression for an infinitely differentiable function u(x, y) defined on the square

S(−∞ < x, y < ∞), where Tr(x) and Ts(y) are Chebyshev polynomials of the first

kind. Now we employ our new definition EUn (x) to double form.

Definition 2.1. The double ESC functions are in the following form

EUr,s(x, y) = EUr (x) · EUs (y), (2.2)

and the recurrence relation takes the form

EUr+1,s(x, y) =
{

2
(
ex−1
ex+1

)
EUr (x)− EUr−1(x)

}
· EUs (y), r ≥ 1,

EUr,s+1(x, y) = EUr (x) ·
{

2
(
ey−1
ey+1

)
EUs (y)− EUs−1 (y)

}
, s ≥ 1.

(2.3)

2.1. Orthogonality of double ESC functions. The functions EUr,s(x, y) are or-

thogonal with respect to the weight function

w(x, y) = 4e

3

2
(x+y)

(ex + 1)
−3

(ey + 1)
−3

,

with the orthognality condition∫ ∞
−∞

∫ ∞
−∞

EUi,j(x, y)EUk,l(x, y)w(x, y)dxdy =


π2

4
, i = j and k = l,

0, otherwise.
(2.4)
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Also the product relation of double ESC functions used in the partial derivatives

relations is given by(
ex − 1

ex + 1

)(
ey − 1

ey + 1

)
EUm,n(x, y) =

1

4
[EUm+1,n+1(x, y) + EUm+1,n−1(x, y)

+ EUm−1,n+1(x, y) + EUm−1,n−1(x, y)].

2.2. Function expansion in terms of double ESC functions. A function u(x, y)

well defined over the square S(−∞ < x, y <∞), can be expanded as

u(x, y) =

∞∑
r=0

∞∑
s=0

ar,sE
U
r,s(x, y), (2.5)

where

ar,s =
4

π2

∫ ∞
−∞

∫ ∞
−∞

u(x, y)EUr,s(x, y)w(x, y)dxdy.

If u(x, y) in expression (2.5) is truncated to n, m < ∞ in terms of the double ESC

functions then, it will takes the form

U(x, y) =

m∑
r=0

n∑
s=0

ar,sE
U
r,s(x, y),= E(x, y) ·A, (2.6)

where E(x, y) is 1×(m+1)(n+1) vector with elements EUr,s(x, y) and A is an unknown

coefficient column vector, where

E(x, y) = [EU0,0(x, y) EU0,1(x, y) ... EU0,n(x, y) EU1,0(x, y) EU1,1(x, y) ...

EU1,n(x, y) ..... EUm,0(x, y) EUm,1(x, y) ... EUm,n(x, y)],

(2.7)

and

A = [a0,0 a0,1 ... a0,n a1,0 a1,1 ... a1,n ..... am,0 am,1 .... am,n]T . (2.8)

2.3. The partial derivatives of double ESC functions. The operational matrices

of derivatives of the double ESC functions are given in the next proposition

Proposition 2.2. The relation between the row vector E(x, y) and its (i,j)th-order

partial derivative is given as

E(i,j)(x, y) = E(x, y)(Dx)i(Dy)j , (2.9)
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where, Dx and Dy are the (m+ 1)(n+ 1)× (m+ 1)(n+ 1) operational matrices for

the partial derivatives, and the general form of them is

Dx = diag

((
α

4
+

1

2
γα

)
I, 0,

−α
4

I

)T
,

α = 0, 1, ..., m, γα =

{
0, if α = 0,

1, if α 6= 0,

(2.10)

and

Dy =


η 0 · · · 0

0 η · · · 0
...

...
. . .

...

0 0 · · · η


T

, η = diag

(
β

4
+

1

2
γβ , 0,

−β
4

)
,

β = 0, 1, ..., n, γβ =

{
0, if β = 0,

1, if β 6= 0,

(2.11)

where I and 0 are (n+ 1)× (n+ 1) identity and zero matrices in the block matrix Dx

which is (m+ 1)× (m+ 1). Also η is the matrix of (n+ 1) × (n+ 1) in the block

matrix Dy which is (m+ 1) × (m+ 1).

Proof. The partial derivatives of the ESC functions can be obtained by differentiating

relation (2.3), first with respect to the variable x, and with the help of (2.6) we get

∂

∂x

(
EU0,s(x, y)

)
= 0, for all s, (2.12)

∂

∂x

(
EU1,s(x, y)

)
= 4ex

(1+ex)2E
U
s (y) =

(
3
4E

U
0 (x)− 1

4E
U
2 (x)

)
EUs (y)

= 3
4E

U
0,s(x, y)− 1

4E
U
2,s(x, y),

(2.13)

and

∂

∂x

(
EUr+1,s(x, y)

)
=

∂

∂x

[
2EU1,s(x, y)EUr,s(x, y)− EUr−1,s(x, y)

]
=

∂

∂x

[
2
(
EU1,s(x, y)

)(0,0) (
EUr,s(x, y)

)(0,0) −
(
EUr−1,s(x, y)

)(0,0)
]

= [2
(
EU1,s(x, y)

)(1,0) (
EUr,s(x, y)

)(0,0)
+ 2

(
EU1,s(x, y)

)(0,0) (
EUr,s(x, y)

)(1,0)

−
(
EUr−1,s(x, y)

)(1,0)
],

(2.14)
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by using the relations (2.12)-(2.14) and with the help of product relation for r =

0, 1, ...,m, the elements of the matrix of dersvatives Dx can be obtained from the

following equalities

(
EU0,s(x, y)

)(1,0)
= 0,(

EU1,s(x, y)
)(1,0)

= 3
4E

U
0,s(x, y)− 1

4E
U
2,s(x, y),(

EU2,s(x, y)
)(1,0)

= EU1,s(x, y)− 1
2E

U
3,s(x, y),

...(
EUr,s(x, y)

)(1,0)
= r+2

4 Er−1,s(x, y)− r
4Er+1,s(x, y), r > 1, for all s.

(2.15)

Similarly, we get the partial derivative with respect to the variable y as

(
EUr,0(x, y)

)(0,1)
= 0,(

EUr,1(x, y)
)(0,1)

= 3
4E

U
r,0(x, y)− 1

4E
U
r,2(x, y),(

EUr,2(x, y)
)(0,1)

=EUr,1(x, y)− 1
2E

U
r,3(x, y),

...(
EUr,s(x, y)

)(0,1)
= s+2

4 Er,s−1(x, y)− s
4Er,s+1(x, y), s > 1, for all r.

(2.16)

Then, the previous equalities (2.15),(2.16) form (m+ 1)(n+ 1)× (m+ 1)(n+ 1) two

operational matrices Dx and Dy by our consideration that(
EUr,s(x, y)

)(1,0)
=
(
EUr,s(x, y)

)(0,1)
=
(
EUr,s(x, y)

)(0,0)
= 0, for r > m and s > n.

Thus, to obtain the matrix E(i,j)(x, y) in terms of E(x, y), we can use the relation

(2.15), (2.16) as

E(1,0)(x, y) = E(x, y)Dx,

E(2,0)(x, y) = E(1,0)(x, y)Dx = (E(x, y)Dx) Dx = E(x, y) (Dx)
2
,

E(3,0)(x, y) = E(1,0)(x, y) (Dx, )
2

= E(x, y) (Dx)
3
.

Therefore, by induction we can write

E(i,0)(x, y) = E(x, y) (Dx)
i
, (2.17)

similarly

E(0,j)(x, y) = E(x, y) (Dy)
j
, (2.18)
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hence, by using (2.17), (2.18) we get finally

E(i,j)(x, y) = E(x, y) (Dx)
i
(Dy)

j
, (2.19)

which end the proof. �

3. Application of the introduced partial derivatives for high-order

PDEs

The forms of high-order linear non-homogeneous partial differential equations with

variable coefficients in unbounded domains are
p∑
i=0

r∑
j=0

qi,j(x, y)u(i,j)(x, y) = f(x, y),−∞ < x, y <∞, (3.1)

with the non-local conditions [7], [16]

ρ∑
t=1

p∑
i=0

r∑
j=0

bti,ju
(i,j) (ωt, ηt) = λ ,

and / or

ν∑
t=1

p∑
i=0

r∑
j=0

cti,j(x)u(i,j) (x, γt) = g(x) , (3.2)

and / or

θ∑
t=1

p∑
i=0

r∑
j=0

dti,j(y)u(i,j) (εt, y) = h(y) ,

where the u(0,0)(x, y) = u(x, y), u(i,j)(x, y) = ∂i+j

∂xi∂yj u(x, y) and qi,j(x, y), f(x, y),

cti,j(x), g(x), dti,j(y) and h(y) are known functions on the square S (−∞ < x, y <∞, ),
and ωt, ηt, γt, εt are constants ∈ (−∞,∞) and may be one or more of them tends to

infinity. Now, we consider that the approximate solution U(x, y) to the exact solution

u(x, y) of Eq. (3.1) defined by expression (2.6) and its (i, j)-th partial derivatives

defined by Eq. (2.19) as

U(x, y) =

m∑
r=0

n∑
s=0

ar,sEr,s(x, y) = E(x, y) ·A, (3.3)

and

U (i,j)(x, y) = [E(x, y)(Dx)i(Dy)j ]A. (3.4)
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4. Fundamental matrix relations

Let us define the collocation points [10,14], so that −∞ < xi, yi <∞, as

xk = Ln

(
1+cos( kπm )
1−cos( kπm )

)
, yl = Ln

(
1+cos( lπn )
1−cos( lπn )

)
,

(k = 1, ..., m− 1, l = 1, ..., n− 1)

(4.1)

and at the boundaries

(k = 0, k = m) x0 →∞, xm → −∞, (l = 0, l = n) y0 →∞, yn → −∞.

Since the double ESC functions are convergent at both boundaries ±∞, then the

appearance of infinity in the collocation points does not cause a loss or divergence in

the method. Now, we substitute the collocation points (4.1) into Eq. (3.1) to obtain

p∑
i=0

r∑
j=0

qi,j(xk, yl)u
(i,j)(xk, yl) = f(xk, yl), (4.2)

the system (4.2) can be written in the matrix form

p∑
i=0

r∑
j=0

Qi,j U(i,j) = F, p ≤ m, r ≤ n, (4.3)

where Qi,j denotes the diagonal matrix with inner elements are qi,j(xk, yl) where,

(k = 0, 1, 2, ..., m ; l = 0, 1, 2, ..., n) and F denotes the column matrix with the

elements f(xk, yl) where, (k = 0, 1, 2, ..., m ; l = 0, 1, 2, ..., n), by substituting the

collocation points (4.1) into derivatives of the unknown function as in Eq. (3.4) yields

U(i,j) =



U (i,j)(x0, y0)
...

U (i,j)(x0, yn)

U (i,j)(x1, y0)
...

U (i,j)(x1, yn)
...

U (i,j)(xn, ym)


= [E(Dx)i(Dy)j ]A , (4.4)

where

E = [E(x0, y0) E(x0, y1) ... E(x0, yn) E(x1, y0) E(x1, y1) ... E(x1, yn)

... E(xm, y0) E(xm, y1) ... E(xm, yn)]T ,
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therefore, from Eq. (4.3), we get a system of matrix equation ”fundamental matrix”

for the PDE in the following form p∑
i=0

r∑
j=0

Qi,j

{
E(x, y)(Dx)i(Dy)j

}A = F, (4.5)

which corresponds to a system of (m + 1)(n + 1) linear algebraic equations with

(m+1)(n+1) double ESC coefficients ar,s unknowns. By substituting the collocation

points (4.1) in the condition (3.2) by same procedure before we get the fundamental

matrices for conditions as∑ρ
t=1

∑p
i=0

∑r
j=0 b

t
i,j

{
E (ωt, ηt) (Dx)i(Dy)j

}
A = λ,∑ν

t=1

∑p
i=0

∑r
j=0 c

t
i,j(xk)

{
E (xk, γt) (Dx)i(Dy)j

}
A = g(xk),∑θ

t=1

∑p
i=0

∑r
j=0 d

t
i,j(yl)

{
E (εt, yl) (Dx)i(Dy)j

}
A = h(yl) .

(4.6)

It is also noted that the structure of matrices Qi,j and F vary according to the number

of collocation points and the structure of the problem. However, E, Dx and Dy do

not change their nature for fixed values of m and n which are truncation limits of the

ESC series. In the other words, the changes in E, Dx and Dy are only dependent on

the number of collocation points.

5. Method of solution

The fundamental matrix (4.5) for Eq. (3.1) corresponding to a system of (m+1)(n+

1) algebraic equations for the (m+1)(n+1) unknown ESC coefficients a0,0, a0,1, · · · , a0,n,

a1,0, a1,1, · · · , a1,n, · · · , am,0, am,1, · · · , am,n.
We can write the matrix (4.5) as

WA=F, or [W; F], (5.1)

and we can obtain the matrix form for the conditions by means of (4.6) in a compact

form as

VA = R, or [V; R] , (5.2)

where V is a h× (m+ 1)(n+ 1) matrix and R is a h× 1 matrix, so that h is the rank

of the all row matrices as in (4.6) belong to the given conditions. Then (5.1) together

with (5.2) can be written in the following compact form:

W∗A = F∗, or [W∗; F∗] . (5.3)

Furthermore, the system (5.3) can be formed by appending the rows (5.2) on condi-

tions to the system (5.1). Then the size of the system of algebraic equations increases
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and therefore W∗ becomes a rectangular matrix. To solve this new system, the gen-

eralized inverse of W∗ can be used [7], and so the double ESC coefficients can be

found as

A = geninv(W∗) · F∗.

The method procedure can be summarized by the following algorithm:

1. Calculating the matrix W;

2. Forming the matrix W∗ by adding V;

3. Solving the system of algebraic equations and finding ESC coefficients.

6. Test examples

We consider here some test examples that will be numerically treated by the above

proposed method. The numerical computations are carried out by the Mathematica.

7.0.

Example: 6.1

Consider the following partial differential equation

u(2,1) +
1

1 + ex
u(1,0) = f(x, y), x, y ∈ (−∞, ∞) , (6.1)

to be the first test problem, with exact solution

u(x, y) = (−5 + 3 Coshy)Sech2
(y

2

)(
Tanh

x

2

)
,

where, the function f(x, y) takes the form

f(x, y) =
Sech2

(
x
2

) (
−5 + 3 Coshy − 8(−1 + ex)Tanh

(
x
2

))
(−1 + ex)(1 + Coshy)

,

and the subjected conditions are

u(x, y) = 6 Tanh
(
x
2

)
, at y →∞,

u(x, y) = 6 at x→∞ and at y → −∞,
u(0, 0) = 0,

u(x, 0) = 2 at x→ −∞ .

The fundamental matrix takes the form{
Q1,0

[
E (Dx)

1
]

+ Q2,1

[
E (Dx)

2
(Dy)

1
]}

A = F,

we take m = n = 8, where, the approximate solution given by

U(x, y) = a0,0E
U
0,0(x, y) + a0,1E

U
0,1(x, y) + · · ·+ a8,8E

U
8,8(x, y).
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Then, after the augmented matrix of the system and conditions are computed, we

obtain the coefficients solution as:

a0,0 = a0,1 = ... = a0,8 = 0,

a1,0 = 0, a1,1 = 0, a1,2 = 1, ..., a1,8 = 0,

a2,0 = a2,1 = ... = a2,8 = 0,
...

a8,0 = a8,1 = ... = a8,8 = 0,

and the solution is given as: U(x, y) = EU1,2(x, y),

U(x, y) = 2
(
ex−1
ex+1

)(
−1 + 4

(
ey−1
ey+1

)2
)

= (−5 + 3Coshy)Sech2
(y

2

)
Tanh

(
x
2

)
,

which represent the exact solution of the problem.

Example: 6.2

Consider the following differential equation [10]

uxy −
2

1 + ex
uy =

4ey

(1 + ex)2(1 + ey)2
, x, y ∈ (−∞, ∞) , (6.2)

with conditions

uy(0, y) = 0, u(x, 0) = 0.

The fundamental matrix takes the form{
Q0,1

[
E (Dy)

1
]

+ Q1,1

[
E (Dx)

1
(Dy)

1
]}

A = F,

we take m = n = 4, where the approximate solution given by

U(x, y) = a0,0E
U
0,0(x, y) + a0,1E

U
0,1(x, y) + · · ·+ a4,4E

U
4,4(x, y),

then, after the augmented matrix of the system and conditions are computed, we

obtain the coefficients:

a0,0 = a0,1 = ... = a0,4 = 0,

a1,0 = 0, a1,1 = 1
4 , a1,2 = a1,3 = a1,4 = 0,

a2,0 = a2,1 = ... = a4,4 = 0,

and the solution is given by: U(x, y) = 1
4E

U
1,1(x, y), or

U(x, y) =
1

4

[
2

(
ex − 1

ex + 1

)
2

(
ey − 1

ey + 1

)]
=

(
ex+y − ex − ey + 1

(ex + 1) (ey + 1)

)
,
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which represent the exact solution of Eq (6.2). On the other hand, the approximate

solution given in [10] at n = m = 15 the approximate solution doesn’t give the exact

solution.

Example: 6.3

The Cauchy problem [16], for the one-dimensional homogeneous wave equation is

given by

uyy − c2uxx = 0, −∞ < x <∞, y ∈ [0, ∞),

u (x, 0) = f(x), uy(x, 0) = g(x), −∞ < x <∞.
(6.3)

The solution of this problem can be interpreted as the amplitude of a sound wave

propagating in very long and narrow pipe, which in practice can be considered as

one-dimensional infinite medium. The initial conditions f, g are given functions that

represent the amplitude u(x, y) and the velocity uy of the string at time y = 0. The

exact solution of (6.3) is given by DAlemberts formula

u(x, y) =
1

2
[f(x+ cy) + f(x− cy)] +

1

2c

∫ x+cy

x−cy
g(s)ds.

Thus, if we take f(x) = Sech(x) and g(x) = 0, and applying our present method

to solve (6.3), at n = m = 8, and 10 by using double ESC collocation points, we

obtain the approximate solution U(x, y). In Table 1, the exact and approximate

solutions are listed according to different values of x, y. The calculation of L2 norm(
L2 =

√
h
∑I
i=0 (ui − U i)2

)
presented in Table 2, shows that the grater n,m give

us good accuracy at step size h = 0.1, x ∈ [−2, 2], y ∈ [0, 1]. In Figure 1 we seek

contour plots of the exact and approximate solutions (n = m = 8, 10), such that

x ∈ [−2, 2], y ∈ [0, 1]. Also the error functions for n = m = 8 and 10 are plotted in

Figure 2.
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Figure 1. The contour plots of the exact and approximate solutions

(a) contour plot of the exact solution
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(b) contour plot n = m = 8
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(c) contour plot n = m = 10
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Figure 2. The error function of exact and approximate solutions

(a) Error functions for n = m = 8 (b) Error functions for n = m = 10
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Table. 1 comparing the approximate and exact solution

x y Exact Our method Abs error Our method Abs error

solution n = m = 8 n = m = 10

0 1 0.648054 0.64752 5.34×10−4 0.647913 1.41×10−4

0.1 0.9 0.697877 0.697663 2.13×10−4 0.697525 4.94×10−4

0.2 0.5 0.876667 0.877628 9.60×10−4 0.874907 8.92×10−4

0.3 0.7 0.786531 0.787771 1.23×10−3 0.786684 1.52×10−4

0.4 0.6 0.814191 0.816115 1.92×10−3 0.815118 9.27×10−4

0.5 0.5 0.824027 0.826211 2.18×10−3 0.825253 1.22×10−3

0.6 0.3 0.827211 0.828661 1.44×10−3 0.82791 6.98×10−4

0.7 0.4 0.777981 0.77964 1.65×10−3 0.778372 3.90×10−4

0.8 0.7 0.710058 0.710421 3.62×10−4 0.710033 2.50×10−5

0.9 0.2 0.69802 0.697939 8.03×10−5 0.697525 4.94×10−4

1 1 0.632901 0.631296 1.60×10−3 0.63639 3.48×10−3

Table 2. Comparing the L2-norm

our method

n = m = 8 1.04597×10−3

n = m = 10 4.16219×10−4

Example: 6.4

Let us consider the Poisson equation [2, 16]

52u = f (x, y) , 0 ≤ x, y ≤ 1. (6.4)

Poisson equation arises in steady state heat problems with time independent heat

sources, where the Dirichlet boundary conditions in general form is

u(0, y) = f1(y), u(x, 0) = g1(x),

u(1, y) = f2(y), u(x, 1) = g2(x).

If we chose the exact solution to be as

u(x, y) = (1 + ex)
−1

(1 + ey)
−1
,

then, we find

f1(y) =
1

2
(1 + ey)

−1
, g1(x) =

1

2
(1 + ex)

−1
,

f2(y) = (1 + ey)
−1

(1 + e)
−1
, g2(x) = (1 + e)

−1
(1 + ex)

−1
.

Appling our present method to solve (6.4), at n = m = 8 by using double ESC

collocation points, we obtain the approximate solution
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U(x, y) = 0.25EU0,0(x, y)−0.125EU0,1(x, y)−0.125EU1,0(x, y)+0.0625EU1,1(x, y).

By simplifying the previous relation we reach to

U(x, y) = (1 + ex)
−1

(1 + ey)
−1
,

which represent the exact solution of Poisson equation (6.4) with the connected con-

ditions.

7. Conclusion

In this paper, a collocation method for solving high-order linear partial differential

equations with variable coefficients under more general form of conditions is investi-

gated. The method is based on the approximation by truncated double exponential

second kind Chebyshev (ESC) series, and the definition of the partial derivatives is

presented. All principles and properties of this type are derived and introduced by

us as new definitions. The definition of the partial derivatives of ESC functions is

presented and derived as new operational matrices of derivatives. The PDEs and

conditions are transformed into block matrix equations, which correspond to system

of linear algebraic equations with unknown ESC coefficients, by using ESC colloca-

tion points. The generalized invers is used to solve this linear system and to find the

ESC coefficients. Illustrative examples are used to demonstrate the applicability and

the effectiveness of the proposed technique. In addition, an interesting feature of this

method is to find the analytical exact solution if the equation has an exact solution

of rational exponential form. The method can also be extended to high-order nonlin-

ear partial differential equation with variable coefficients, but some modifications are

required.
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