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Abstract In this paper, optimal distributed control of the time-dependent Navier-Stokes equa-
tions is considered. The control problem involves the minimization of a measure of
the distance between the velocity field and a given target velocity field. A mixed
numerical method involving a quasi-Newton algorithm, a novel calculation of the
gradients and an inhomogeneous Navier-Stokes solver, to find the optimal control of
the Navier-Stokes equations is proposed. Numerical examples are given to demon-
strate the efficiency of the method.
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1. Introduction

Optimal control of the Navier-Stokes equations is a constrained optimization prob-

lem with the Navier-Stokes equations serving as subsidiary conditions. PDE-constrained

optimization problems arise in many applications and so received much progress dur-

ing recent years for example Hicken and Alonso [14] described an algorithm for PDE-

constrained optimization that controls numerical errors. Akbarian and Keyanpour [1]

proposed a new numerical method for solving a class of fractional order optimal con-

trol problems. The fractional optimal control theory is a new topic in Mathematics.

Kar [17] discussed an optimal control problem in population dynamics.
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In general, optimal control problems are classified into distributed and boundary con-

trol problems. In the case of additional constraints, optimal control problems rather

than the Navier-Stokes equations are divided into four groups: (i) State-constrained

[8], (ii) Control-constrained [25], (iii) mixed state-control constrained [9] and (iv) op-

timal control of the Navier-Stokes equations without inequality constraints [16], [13].

Hinze and Kunisch [16] have used second order methods for optimal control of the

time-dependent Navier-Stokes equations for the first time. Hinze [15] has delivered a

good literature review up to 2002 in his research report.

Li et al. [19] have presented a general method based on adjoint formulation for the

optimal control of distributed parameter systems and applied it to the problem of

controlling vortex shedding behind a cylinder governed by the unsteady two dimen-

sional Navier-Stokes equations with time-dependent boundary conditions. They used

a quasi-Newton Daviden-Fletcher-Powell (DFP) method for the minimization of the

cost function. Chaabane et al. [4] have considered a non-convex cost function of the

velocity gradient tensor and provide the optimality systems based on a lagrangian

formulation and adjoint equations. Optimal boundary control problems for the three

dimensional evolutionary Navier-Stokes equations in the exterior of a bounded do-

main are investigated by Fursikov et al. [10], theoretically. In their work the drag

functional is minimized as a control objective. The problem of an appropriate choice

of a cost functional for vortex reduction for unsteady flows is considered by Kunisch

and Vexler [18]. Brizitskii [3] has studied optimal control problems for the station-

ary Navier-Stokes equations with mixed boundary conditions on velocity and derived

some theorems on the uniqueness and stability of solutions for the particular func-

tional that depend on the total pressure. Bilić in [2] has derived some theoretical

results for the optimal control of a coefficient in modification of the Navier-Stokes

equations. She considered the coefficient of the kinematic viscosity to be a positive

function of the velocity gradient. Recently, the existence of optimal solution and the

maximum principle for optimal control problem of Navier-Stokes equations with state

constraint of point wise type in three dimensions are studied by Liu [20].

In this work, optimal distributed control of the time-dependent incompressible Navier-

Stokes equations in the absence of inequality constraints is considered. The tracking

type objective functional is minimized in order to control the behaviour of the fluid

flow close enough to the specific target flow. While the continuous optimality condi-

tions are given, the discretization of the optimality system is derived. The discretized

system is solved by a quasi-Newton algorithm [21] using a novel calculation of the

gradients [11] and an inhomogeneous Navier-Stokes solver.
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The paper is organized as follows. In Section 2, we will briefly review some theory

in optimal control of the Navier-Stokes equations. Section 3 gives details of the op-

timization method applied for the optimal control problem and deals with numerical

solution of the inhomogeneous Navier-Stokes equations. Numerical results are given

in Section 4.

2. Optimal control of Navier-Stokes equations

Let Ω ⊂ R
2 be a bounded domain with ∂Ω ∈ C2. Solenoidal spaces are introduced

as follows

H := {v ∈ C∞
0

2 : divv = 0}
−|·|

L2(Ω)2 ,

V := {v ∈ C∞
0

2 : divv = 0}
−|·|

H1(Ω)2 ,

where the superscripts denote closures in the respective norms. Optimal distributed

control of the Navier-Stokes equations is given by [15]

min
(u,f )∈W×U

J(u,f),

s.t. :

∂u

∂t
+ (u · ∇)u−

1

Re
∆u +∇p = f , inΩ× (0, T ),

∇ · u = 0, inΩ× (0, T ),

u(t, ·) = 0, on (∂Ω)× (0, T ),

u(0, ·) = u0, inΩ, (2.1)

where u : [0, T ]×Ω → R
2 is the velocity field, p : [0, T ]×Ω → R is the pressure field,

f : [0, T ] × Ω → R
2 is the control function, T is the final time, Re is the Reynolds

number, u0 is a given initial velocity field and U is the Hilbert space of controls.

Further we define W to be

W = {v ∈ L2(V ) : vt ∈ L2(V ∗)},

with the associated norm

|v|W = |v|L2(V ) + |vt|L2(V ∗),

where V ∗ is the dual space of V .

In this paper, we consider the tracking type objective functional

J(u,f) =
1

2

∫ T

0

∫

Ω

|u− z|2dxdydt+
α

2
|f |2U .
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Here z is a given velocity of a target flow and α is a penalty parameter. It is assumed

that J is bounded from below, weakly lower semi-continuous, twice Fréchet differen-

tiable with locally Lipschitzean second derivative and radially unbounded in f .

Thanks to Theorem 2.1 in Ref. [15] for every f ∈ U , there exists a unique element

u = u(f ) satisfying the Navier-Stokes equations, therefore problem (2.1) can be

equivalently written as

min
f∈U

Ĵ(f) = J(u(f ),f).

Theorem 2.1. Under above assumptions, problem (2.1) admits a solution (u∗(f∗),f∗) ∈

W × U .

Proof. See [15]. �

2.1. Lid driven cavity control. Let us consider the lid driven cavity control of the

Navier-Stokes equations in two dimensions as follows

(p) : min J(u, v, f1, f2) =
1

2

∫ 1

0

∫ 1

0

∫ 1

0

[(u− z1)
2 + (v − z2)

2]dxdydt

+
α

2

∫ 1

0

∫ 1

0

∫ 1

0

(f2
1 + f2

2 )dxdydt,

s.t. :

ut + px + u · ux + v · uy −
1

Re
(uxx + uyy) = f1, inΩ× (0, T ),

vt + py + u · vx + v · vy −
1

Re
(vxx + vyy) = f2, inΩ× (0, T ),

ux + vy = 0, inΩ,

u = 1, v = 0, Γ1 : 0 ≤ x ≤ 1, y = 1,

u = 0, v = 0, Γ2 : 0 ≤ x ≤ 1, y = 0,

u = 0, v = 0, Γ3 : x = 0, 0 ≤ y ≤ 1,

u = 0, v = 0, Γ4 : x = 1, 0 ≤ y ≤ 1,

u(0, ·) = 0, inΩ,

v(0, ·) = 0, inΩ, (2.2)

where u and v are the components of the velocity field, z1 and z2 are the components of

the velocity of the target flow, f1 and f2 are the components of the control variable, p is

the pressure, Γ1, Γ2, Γ3 and Γ4 are the corresponding boundaries for Ω = (0, 1)×(0, 1).
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3. Numerical solution for the optimal control problem

In this section we present a typical optimization algorithm as follows [11].

Algorithm.

Start with an initial guess f0 = (f0
1 , f

0
2 ) for the control vector. Then for n = 0, 1, 2, ...

(1) Solve the Navier-Stokes equations to obtain the corresponding state

un = (un, vn),

(2) Compute dĴ
df
|fn ,

(3) Use the results of steps (1) and (2) to compute an optimal direction δf ,

(4) set fn+1 = f
n + δf .

For the step (1) and step (3) we use a Navier-Stokes solver and the quasi-Newton

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [21], respectively. For the step (2)

we use the following method. By the chain rule we have

Ĵ ′ =







∂J
∂f1

∂J
∂f2






=







∂J1

∂u
· ∂u
∂f1

+ ∂J2

∂f1

∂J1

∂v
· ∂v
∂f2

+ ∂J2

∂f2






,

where

J1 =
1

2

∫ 1

0

∫ 1

0

∫ 1

0

[(u− z1)
2 + (v − z2)

2]dxdydt,

J2 =
α

2

∫ 1

0

∫ 1

0

∫ 1

0

(f2
1 + f2

2 )dxdydt,

The terms ∂J2

∂f1
, ∂J1

∂v
, ∂J1

∂u
and ∂J2

∂f2
are as follows [15]

∂J1
∂u

= u− z1,
∂J1
∂v

= v − z2,

∂J2
∂f1

= αf1,
∂J2
∂f2

= αf2.

For the terms ∂u
∂f1

and ∂v
∂f2

, we use the finite difference approximation [11]

∂u

∂f1
|fn

1
=

u(fn
1 )− u(f1)

fn
1 − f1

,

∂v

∂f2
|fn

2
=

v(fn
2 )− v(f2)

fn
2 − f2

,

where f1 and f2 are some values close to fn
1 and fn

2 , respectively.

3.1. Numerical solution of the Navier-Stokes equations. For the numerical so-

lution of the Navier-Stokes equations, a finite difference solver given by Seibold [23],
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mitnavierstokes1806.m, have been extended to inhomogeneous Navier-Stokes equa-

tions using Strang’s general approach [24]. Now, we present a brief summary of the

numerical solution approach. While (u, v) and p are the solutions to the Navier-

Stokes equations, we denote the numerical approximations by capital letters. Assume

we have the velocity field Un and V n at the nth time step and condition (2.2) is

satisfied. We find the solution at the (n+ 1)th time step by the following three step

approach:

• Explicit treatment of the nonlinear terms

U∗ − Un

∆t
= −((Un)2)x − (UnV n)y + f1

n,

V ∗ − V n

∆t
= −(UnV n)x − ((V n)2)y + f2

n,

• Implicit treatment of the viscosity terms

U∗∗ − U∗

∆t
=

1

Re
(U∗∗

xx + U∗∗
yy ),

V ∗∗ − V ∗

∆t
=

1

Re
(V ∗∗

xx + V ∗∗
yy ),

• Pressure correction

We correct the intermediate velocity field (U∗∗, V ∗∗) by the gradient of a

pressure Pn+1 to enforce incompressibility.

Un+1 − U∗∗

∆t
= −(Pn+1)x,

V n+1 − V ∗∗

∆t
= −(Pn+1)y,

in vector notation the correction equations read as

1

∆t
Un+1 −

1

∆t
Un = −∇Pn+1.

Applying the divergence to both sides of the above equation yields the fol-

lowing linear system of equations.

−∆Pn+1 = −
1

∆t
∇ ·Un.

4. Numerical results

To elucidate this presentation and test the efficiency of the proposed method, we

consider the lid driven cavity optimal control of the Navier-Stokes equations. Let the

domain be a unit square, Ω = [0, 1] × [0, 1], and the final time, T , to be 4. Spacial

discretization is done on a staggered grid. The temporal and spacial mesh sizes are
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set to ∆t = 0.01 and ∆x = ∆y = 1/76, respectively.

Example 1. In this example we consider the Stokes flow as the target flow. To

do this, the Navier-Stokes equations with a Reynolds number that was very smaller

than one is solved as the target flow. A Navier-Stokes flow with Reynolds number

equal to 10 matches the target flow in the beginning time steps.

The target flow and the controlled flow at t = 0, t = 0.3 and t = 1 are shown in

Figure 1. The figure shows that a good match is achieved at the time t=0.3.

Furthermore, the infinity norm of (U − z) between the controlled flow and the target

flow and the infinity norm of f of the optimal control versus time is shown in Figure 2.

As one can see the error ‖U − z‖ goes to zero and the norm of the control becomes

relatively large at the beginning in order to steer the controlled flow to the target flow

and then after a good match is achieved, its norm remains relatively constant. Table 1

demonstrates the infinity norm of approximate gradient, the difference between the

controlled flow and the target flow and the control variable, respectively.

Example 2. Here, we have solved the Navier-Stokes equations with a Reynolds

number equal to 100 and obtained the velocity of the target flow. The target flow is

a Navier-Stokes flow with Reynolds number equal to 100. In this case, a flow with

Reynolds number equal 20 is made close enough to the target flow. Similar results

are obtained that is shown in figures 3 and 4 and Table 2.

These examples confirm that the proposed method works well in making close enough

a Navier-Stokes flow with low Reynolds number to a Navier-Stokes flow with higher

Reynolds number and vice versa.

5. Conclusion

In this article, we have combined several mathematical methods including a quasi-

Newton algorithm, a new calculation of the gradients and a Navier-Stokes solver, to

solve the optimal control of the time-dependent Navier-Stokes equations. We have

extended a homogeneous Navier-Stokes solver to an inhomogeneous one and used it

for the optimization problem.

The implementation of this method is simple and gives good results in initial

iterations. The numerical results have demonstrated the accuracy of the proposed

method.
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[9] J. C. de los Reyes and F. Tröltzsch, Optimal control of the stationary Navier-Stokes equations

with mixed control-state constraints, SIAM Journal on Control and Optimization, 46(2) (2007),

604-629.

[10] A. V. Fursikov, M. D. Gunzburger and L. S. Hou, Optimal boundary control for the evolutionary

Navier-Stokes system: The three dimensional case, SIAM J. Control Optim. 43 (2005), 2191-

2232.

[11] M. Gunzburger, Adjoint equation-based methods for control problems inincompressible, viscous

flows, Flow, Turbulence and Combustion 65 (2000), 249-272.

[12] H. Heidari and A. Malek, Null boundary controllability for hyperdiffusion equation, Int. J. App.

Math. 22,(4) (2009), 615-626.

[13] M. Heinkenschloss, Formulation and analysis of a sequential quadratic programming method

for the optimal dirichlet boundary control of Navier-Stokes flow, in Optimal Control: Theory,

Algorithms and Applications, Kluwer Academic Publishers B. V. ,1998.

[14] J.E. Hicken and J.J. Alonso (2014), PDE-constrained optimization with error estimation and

control, Journal of Computational Physics, 263 (2014), 136-150.

[15] M. Hinze, Optimal and instantanous control of the instationary Navier-Stokes equations, Insti-

tute für Numerische Mathematik, Technische Universität Dresden, 2002.

[16] M. Hinze and K. Kunisch, Second order methods for optimal control of time-dependent fluid

flow, Karl-Franzens Universität Graz, Institut für Mathematik, Spezialforschungsbereich F003,

Bereich 165, 1999.

[17] T.K. Kar, A resource based stage-structured fishery model with selective harvesting of mature

species, Applications And Applied Mathematics, 5 (2010), 42-58.



CMDE Vol. 3, No. 2, 2015, pp. 87-98 95

[18] K. Kunisch and B. Vexler, Optimal vortex reduction for instationary flows based on translation

invariant cost functional, SIAM J. Control Optim,vol. 46, Issue 4(2007), 1368-1397.

[19] Z. Li, I. M. Navon, M. Y. Hussaini and F. X. L. Dimet, Optimal control of cylinder wakes via

suction and blowing, Computers and Fluids 32(2003), 149-171.

[20] H. Liu, Optimal control problems with state constraint governed by Navier-Stokes equations,

Nonlinear Analysis 73(2010), 3924-3939.

[21] J. Nocedal and S. J. Wright, Numerical Optimization, Springer, 1999.

[22] R. W. H. Sargent, Optimal control, Journal of Computational and Applied Mathematics (2000),

361-371.

[23] B. Seibold, A compact and fast matlab code solving the incompressible Navier-Stokes equations

on rectangular domains, Massachusetts Institute of Technology, 2008.

[24] G. Strang, Computational Science and Engineering, First Edition, Wellesley Cambridge Press,

2007.

[25] M. Ulbrich, Constrained optimal control of Navier-Stokes flow by semismooth newton methods,

Systems and control letters 48(2003), 297-311.

Table 1. Performance of the BFGS algorithm for Example 1.
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Figure 1. Streamlines of target flow (top left), streamlines of con-
trolled flow at t=0 (top right), streamlines of controlled flow at t=0.3
(bottom left) and streamlines of controlled flow at t=1 (bottom right)
for Example 1.
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Figure 2. The norm ‖f‖ of the optimal control (left) and the norm
‖U − z‖ between the controlled flow and the target flow (right) vs.
time for Example 1.
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Figure 3. Streamlines of target flow (top left), streamlines of con-
trolled flow at t=0 (top right), streamlines of controlled flow at t=1
(bottom left) and streamlines of controlled flow at t=4 (bottom right)
for Example 2.
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Figure 4. The norm ‖f‖ of the optimal control (left) and the norm
‖U − z‖ between the controlled flow and the target flow (right) vs.
iteration for Example 2.
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Table 2. Performance of the BFGS algorithm for Example 2.

Iteration Ĵ ′ norm(U − z) norm(f )
0 0.081829692380660 0.289374201890752 0.000000000000000
1 0.071082950052867 0.278008875833359 0.081829692380660
2 0.052545279623648 0.250687694252410 0.547936121577062
...

...
...

...
200 0.000011492695819 0.221699668533595 10.212535627658578
201 0.000010945474911 0.221699043846042 10.212132358401371
202 0.000009858529245 0.221697181401740 10.211796591651238
...

...
...

...
398 0.000000000407023 0.221683839087889 10.206532516428085
399 0.000000000376881 0.221683839073550 10.206532523734090
400 0.000000000327853 0.221683839045965 10.206532536020260
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