تعداد نشریات | 43 |
تعداد شمارهها | 1,268 |
تعداد مقالات | 15,628 |
تعداد مشاهده مقاله | 51,679,414 |
تعداد دریافت فایل اصل مقاله | 14,564,835 |
ارزیابی حالت توجه انتخابی دیداری بهکمک تحلیل پتانسیلهای وابسته به رویداد مغزی | ||
مجله مهندسی برق دانشگاه تبریز | ||
مقاله 2، دوره 46، شماره 1 - شماره پیاپی 75، خرداد 1395، صفحه 13-24 اصل مقاله (571.28 K) | ||
نویسندگان | ||
محمدرضا اکبرزاده توتونچی* ؛ سیدعابد حسینی؛ محمدباقر نقیبی سیستانی | ||
دانشگاه فردوسی مشهد - دانشکده مهندسی | ||
چکیده | ||
این تحقیق بهمنظور ارزیابی فعالیت نواحی مختلف مغز در حالت توجه انتخابی دیداری به کمک پتانسیلهای وابسته به رویداد (ERP) پیشنهاد میشود. توجه انتخابی به محدودیتهای ظرفیت پردازشی مغز در پرداختن به چند محرک همزمان اشاره دارد. متوسط سیگنالهای هر دسته از تحریکها که نسبت به وقوع تحریک از نظر زمانی قفل شدهاند، برای استخراج ERPها استفاده میشوند. در این مقاله، استخراج ویژگی توسط ضرایب موجک و شکلی-زمانی، انتخاب ویژگی بهینه توسط مقدار p و معیار پراکندگی و طبقهبندی به کمک ماشین بردار پشتیبان (SVM) با هستههای گوسی و چندجملهای انجام میشود. در این تحقیق برای ارزیابی نتایج از روش پنج دسته استفاده میشود. نتایج نشان میدهد بیشترین میزان تفکیک بین پاسخها را بازه 100 تا 400 میلیثانیه به کمک روش تحلیل تفکیکی قدمبهقدم ایجاد میکند. در اکثر شرکتکنندگان دامنه قله P3b روی تحریک هدف نسبت به غیر هدف بیشتر است. دو دسته هدف و غیر هدف به کمک معیار پراکندگی و SVM با هسته گوسی با درصد صحت متوسط 7/86% از یکدیگر تفکیک شدند. بیشترین صحت مربوط به نواحی گیجگاهی و آهیانهای بوده و غلبه خاصی در نیمکرههای مغزی وجود ندارد. بنابراین روش مورد استفاده از جمله روشهای مفید در بازنمایی رفتار مغز در حالت توجه انتخابی دیداری است. | ||
کلیدواژهها | ||
توجه انتخابی دیداری؛ پتانسیلهای وابسته به رویداد؛ انتخاب ویژگی بهینه؛ انتخاب بازه بهینه | ||
مراجع | ||
[1] C.D. Wickens, and J.S. McCarley, Applied Attention Theory, CRC Press, Taylor & Francis Group, Boca Raton, 2008. [2] M. Kallenberg, P. Desain, and S. Gielen, “Auditory selective attention as a method for a brain computer interface,” Nijmegen CNS, vol. 2, no. 1, pp. 1-16, 2006. [3] S.K. Loo, and S. Makeig, “Clinical utility of EEG in attention-deficit/hyperactivity disorder: a research update,” Neurotherapeutics, vol. 9, no. 3, pp. 569-587, 2012. [4] T.A. Stroganova, G. Nygren, M.M. Tsetlin, I.N. Posikera, C. Gillberg, M. Elam, and et al., “Abnormal EEG lateralization in boys with autism,” Clinical Neurophysiology, vol. 118, no. 8, pp. 1842-1854, 2007. [5] S. Othmer, and M. Steinberg, Clinical Addiction Psychiatry: EEG Neurofeedback Therapy, Chapter 19, D. Brizer and R. Castaneda (Eds.), pp. 169-187, 2010. [6] C.T. Lin, Y.C. Chen, R.C. Wu, S.F. Liangt, and T.Y. Huang, “Assessment of driver’s driving performance and alertness using EEG-based fuzzy neural networks,” IEEE International Symposium on Circuits and Systems, vol. 1, pp. 152-155, May 2005. [7] F. Ghassemi, M.H. Moradi, M. Tehrani-Doost, and V. Abootalebi, “Classification of ADHD / normal participants using frequency features of ERP’s independent components,” Proceedings of the 17th Iranian Conference of Biomedical Engineering, pp. 1-4, Isfahan, Nov 2010. [8] V. Abootalebi, M.H. Moradi, and M.A. Khalilzadeh, “A comparison of methods for ERP assessment in a P300-based GKT,” Psychophysiology, vol. 62, no. 2, pp. 309–320, 2006. [9] س.ع. حسینی، کمیسازی سیگنالهای مغزی بهمنظور ارزیابی سطح استرس روانی، پایاننامه کارشناسی ارشد مهندسی پزشکی، دانشگاه آزاد اسلامی واحد مشهد، آبان 1388. [10] W. James, Principles of Psychology, New York, Holt, 1890. [11] F. Ghassemi, M.H. Moradi, M. Tehrani-Doost, and V. Abootalebi, “Combination of independent component analysis and feature extraction of ERP for level classification of sustained attention,” Proceedings of the 4th International IEEE EMBS Conference on Neural Engineering, Antalya, Turkey, Apr - May, 2009. [12] E.A. Styles, The Psychology of Attention, Taylor & Francis e-Library, 2005. [13] M.M. Sohlberg, and C.A. Mateer, Introduction to Cognitive Rehabilitation: Theory and Practice, New York, Guilford Press, 1989. [14] A. Ward, Attention a Neuropsychological Perspective, Psychology Press, New York, 2004. [15] J. Onton, and S. Makeig, “Information-based modeling of event-related brain dynamics,” Progress in Brain Research, vol. 159, pp. 99-120, 2006. [16] H. Sohn, I. Kim, W. Lee, B.S. Peterson, H. Hong, J.H. Chae, and et al., “Linear and non-linear EEG analysis of adolescents with attention-deficit/hyperactivity disorder during a cognitive task,” Clinical Neurophysiology, vol. 121, no. 11, pp. 1863-1870, 2010. [17] M. Golaa, M. Magnuski, I. Szumska, and A. Wróbel, “EEG beta band activity is related to attention and attentional deficits in the visual performance of elderly subjects,” Psychophysiology, vol. 89, no. 3, pp. 334-341, 2013. [18] T. Shi, X. Li, J. Song, N. Zhao, C. Sun, W. Xia, and et al., “EEG characteristics and visual cognitive function of children with attention deficit hyperactivity disorder (ADHD),” Brain & Development, vol. 34, no. 10, pp. 806–811, 2012. [19] S.J. Luck, Neurophysiology of Selective Attention, In H. Pashler (Ed.), Attention, East Sussex: Psychology Press, pp. 257-295, 1998. [20] P. Jaskowski, and R. Verleger, “An evaluation of methods for single-trial estimation of P3 latency,” Psychophysiology, vol. 37, no. l2, pp. 153–162, 2000. [21] J.S. Paul, A.R. Luft, D.F. Hanley, and N.V. Thakor, “Coherence-weighted wiener filtering of somatosensory evoked potentials,” IEEE Transactions on Biomedical Engineering, vol. 48, no. 12, pp. 1484-1488, 2001. [22] P. Laguna, R. Jané, O. Meste, P.W. Poon, P. Caminal, H. Rix, and et al., “Adaptive filter for event-related bioelectric signals using an impulse correlated reference input: comparison with signal averaging techniques,” IEEE Transactions on Biomedical Engineering, vol. 39, no. 10, pp. 1032-1044, 1992. [23] S. Cerutti, G. Chiarenza, D. Liberati, P. Mascellani, and G. Pavesi, “A parametric method of identification of single-trial event-related potentials in the brain,” IEEE Transactions on Biomedical Engineering, vol. 35, no. 9, pp. 701 – 711, 1988. [24] D.H. Lange, and G.F. Inbar, “Principal component identification of variable single-trial evoked brain potentials,” Nineteenth Convention of Electrical and Electronics Engineers, pp. 403-405, 1996. [25] D. Iyer, N.N. Boutros, and G. Zouridakis, “Independent component analysis of multichannel auditory evoked potentials,” Proceedings of the Second Joint 24th Annual Conference on Engineering in Medicine and Biology, the Annual Fall Meeting of the Biomedical Engineering Society EMBS/BMES, vol. 1, Texas, USA, pp. 204 – 205, Oct 2002. [26] E.O. Altenmuller, and C. Gerloff, Psychophysiology and the EEG, E. NiederMeyer and F. Lopes Da Silva (Eds.), Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 4th Edition, Baltimore, Maryland: Lippincott Williams and Wilkins, Chapter 32, pp. 637-655, 2000. [27] Y. Sato, H. Yabe, T. Hiruma, T. Sutoh, N. Shinozaki, T. Nashida, and et al., “Early contingent negative variation (CNV) shows a small symmetrical negativity in a somatosensory paradigm,” Clinical Electroencephalography, vol. 33, no. 2, pp. 77-81, 2002. [28] و. ابوطالبی، تجزیه و تحلیل مؤلفههای شناختی سیگنال الکتریکی مغز و کاربرد آن در دروغسنجی، رساله دکتری مهندسی پزشکی، دانشگاه صنعتی امیرکبیر، خرداد 1385. [29] J. Polich, “Updating P300: an integrative theory of P3a and P3b,” Clinical Neurophysiology, vol. 118, no. 10, pp. 2128–2148, 2007. [30] J. Polich, P300 in Clinical Applications. In Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, E. NiederMeyer and F. Lopes Da Silva, (Eds.), 4th Edition, Baltimore, Maryland, Lippincott Williams and Wilkins, Chapter 58, pp. 1073-1091, 2000. [31] E. Niedermeyer, and F.L.D. Silva, Electroencephalography: Basic Principles, Clinical Application and Related Fields, 2nd Edition, Urban & Schwarzenberg, Munich Germany, 1987. [32] E. Niedermeyer, and F.L.D. Silva, Electroencephalography, Baltimore MD: Williams and Wilkins, 2nd Edition, 2000. [33] S. Makeig, M. Westerfield, J. Townsend, T.P. Jung, E. Courchesne, and T.J. Sejnowski, “Functionally independent components of the early event-related potential in a visual spatial attention task,” Philosophical Transactions of the Royal Society: Biological Sciences, vol. 354, no. 1387, pp. 1135-1144, 1999. [34] A. Delorme, and S. Makeig, “EEGLAB: an open source toolbox for analysis of singletrial EEG dynamics including independent component analysis,” Neuroscience Methods, vol. 134, no. 1, pp. 9-21, http://www.sccn.ucsd.edu/eeglab/, 2004. [35] E. Molteni, A. Bianchi, M. Butti, G. Reni, and C. Zucca “Analysis of the dynamical behaviour of the EEG rhythms during a test of sustained attention,” Proceedings of the 29th IEEE EMBS Annual International Conference, Lyon, France, pp. 1298 – 1301, Aug 2007. [36] M. Butti, A. Pastori, A. Merzagora, C. Zucca, A. Bianchi, G. Reni, and et al., “Multimodal analysis of a sustained attention protocol: continuous performance test assessed with near infrared spectroscopy and EEG,” Proceedings of the 28th IEEE EMBS Annual International Conference, New York, USA, pp. 1040 – 1043, Aug - Sep 2006. [37] A. Uusberg, H. Uibo, K. Kreegipuu, and J. Allik, “EEG alpha and cortical inhibition in affective attention,” Psychophysiology, vol. 89, no. 1, pp. 26–36, 2013. [38] R. Whelan, R. Lonergan, H. Kiiski, H. Nolan, K. Kinsella, M. Hutchinson, and et al., “Impaired information processing speed and attention allocation in multiple sclerosis patients versus controls: A high-density EEG study,” Neurological Sciences, vol. 293, no. 1-2, pp. 45–50, 2010. [39] J. Ruijter, M.M. Lorist, J. Snel, and M.B. De Ruiter, “The influence of caffeine on sustained attention: an ERP study,” Pharmacology, Biochemistry, and Behavior, vol. 66, no. 1, pp. 29-37, 2000. [40] J.F. Stins, M.S. Tollenaar, D.I.E. Slaats-Willemse, J.K. Buitelaar, H. Swaab-Barneveld, F.C. Verhulst, and et al., “Sustained attention and executive functioning performance in attention-deficit/hyperactivity disorder,” Child Neuropsychology, vol. 11, no. 3, pp. 285–294, 2005. [41] D.F. Hermens, E.X. Soei, S.D. Clarke, M.R. Kohn, E. Gordon, and L.M. Williams, “Resting EEG theta activity predicts cognitive performance in attention-deficit hyperactivity disorder,” Pediatric Neurology, vol. 32, no. 4, pp. 248-256, 2005. [42] J. Townsend, N.S. Harris, and E. Courchesne, “Visual attention abnormalities in autism: delayed orienting to location,” Neuropsychological Society, vol. 2, no. 6, pp. 541–550, 1996. [43] J. Townsend, M. Westerfield, E. Leaver, S. Makeig, T.P. Jung, K. Pierce, and et al., “Event-related brain response abnormalities in autism: evidence for impaired cerebello-frontal spatial attention networks,” Cognitive Brain Research, vol. 11, no. 1, pp. 127–145, 2001. [44] A. Delorme, M. Westerfield, and S. Makeig, “Medial prefrontal theta bursts precede rapid motor responses during visual selective attention,” Neuroscience, vol. 27, no. 44, pp. 11949 –11959, 2007. [45] S. Makeig, and J. Onton, ERP Features and EEG Dynamics: an ICA Perspective, Oxford Handbook of Event-Related Potential Components, S. Luck and E. Kappenman (Eds.), 2011. [46] M.I. Posner, and Y. Cohen, Components of visual orienting, H. Bouma and D. G. Bouwhuis (Eds.), Attention and performance X: Control of language processes, Hillsdale, NJ: Erlbanm, pp. 531-556, 1984. [47] M.I. Posner, “Orienting of attention,” Quarterly Journal of Experimental Psychology, vol. 32, no. 1, pp. 3-25, 1980. [48] م. عبدالصالحی، ارتباط مغز-کامپیوتر با استفاده از پتانسیلهای وابسته به رویداد شنوایی تک ثبت، پایاننامه کارشناسی ارشد مهندسی پزشکی، دانشگاه آزاد اسلامی واحد مشهد، تابستان 1385. [49] I. Kalatzis, N. Piliouras, E. Ventouras, C.C. Papageorgiou, A.D. Rabavilas, and D. Cavouras, “Design and implementation of an SVM-based computer classification system for discriminating depressive patients from healthy controls using the P600 component of ERP signals,” Computer Methods and Programs in Biomedicine, vol. 75, no. 1, pp. 11-22, 2004. [50] I. Kalatzis, N. Piliouras, E. Ventouras, C.C. Papageorgiou, I.A. Liappas, C.C. Nikolaou, and et al., “Design and implementation of a multi-PNN structure for discriminating one-month abstinent heroin addicts from healthy controls using the P600 component of ERP signals,” Pattern Recognition Letters, vol. 26, no. 11, pp. 1691–1700, 2005. [51] E. Basar, C. Basar-Eroglu, S. Karakas and M. Schürmann “Are cognitive processes manifested in event-related gamma, alpha, theta and delta oscillations in the EEG?,” Neuroscience Letters, vol. 259, no. 3, pp. 165-168, 1999. [52] E. Basar, C. Basar-Eroglu, S. Karakas, and M. Schurmann, “Gamma, alpha, delta, and theta oscillations govern cognitive processes,” Psychophysiology, vol. 39, no. 2-3, pp. 241-248, 2001. [53] M. Misiti, Y. Misiti, G. Oppenheim, and J.M. Poggi, Wavelet toolbox user's guide for Matlab, MathWorks, 2012. [54] S. Theodoridis, and K. Koutroumbas, Pattern Recognition, 4th Edition, Academic Press, 2009. [55] J. Fukunaga, Statistical Pattern Recognition, 2nd Edition, New York, Academic Press, 1990. [56] D.L. Davies, and D.W. Bouldin, “A cluster separation measure,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 1, pp. 224-227, 1979. [57] C. Cortes, and V. Vapnik, “Support-Vector Networks,” Machine Learning, vol. 20, pp. 273-297, 1995. [58] س.ع. حسینی،م.ب. نقیبی سیستانی و م.ر. اکبرزاده توتونچی، «ارتباط مغز - رایانه دو بعدی مبتنی بر توجه انتخابی دیداری بهکمک سیگنالهای MEG»، مجله مهندسی برق دانشگاه تبریز، جلد 45، شماره 2، 65-74، تابستان 1394. | ||
آمار تعداد مشاهده مقاله: 1,639 تعداد دریافت فایل اصل مقاله: 1,498 |