اثر تغذیه سطوح مختلف پروتئین و ترتوئین بر عملکرد، کیفیت تخم مرغ و ساختار بافتی رژنوم
مرغهای تخم‌گذار

احسان مقدس، سیدامیرحسین مهدوی، عبدالحسین سعیع و محمد علی عباسی

تاریخ دریافت: 1392/06/23
تاریخ پذیرش: 1392/09/21

چکیده

به‌منظور بررسی اثر تغذیه سطوح مختلف پروتئین و ترتوئین بر عملکرد، کیفیت تخم مرغ و ساختار بافتی رژنوم تخم‌گذار، آزمایش‌ها با استفاده از 180 قطعه مرغ تخم‌گذار لگورن سری‌های W36 (در سن 48 هفتگی) و به مدت 70 روز انجام پذیرفت. مرغها به صورت تصادفی بین 9 تیمار آزمایشی مشابه از 4 تکرار و 5 قطعه مرغ در هر تکرار و در قالب یک آزمایش فاکتوریل ۲×۳ بر پایه طرح کامل تصادفی اختراعی اجرا شد. فاکتورهای مورد مطالعه شامل سه سطح پروتئین خام (۱۰۰، ۱۵۰ و ۲۰۰ درصد توصیه راهنمای پروتئین‌های حیوان‌خوار W36) و سه سطح ترتوئین (۱۰۰، ۱۵۰ و ۲۰۰ درصد توصیه راهنمای پروتئین‌های حیوان‌خوار W36) بود. میانگین مصرف خوراک روزهای، ضریب تبدیل خوراک، درصد تولید، وزن و باره‌های روزانه تخم‌مرغ در سه بذری زمرتی شامل ۲۵ روز اول، ۷۵ روز دوم و ۱۱۱ روز در مجموعه تشخیصی به‌دست آمده بود. در پایان دوره اول و دوم صفات کیفی تخم‌مرغ شامل واحد ها، شاخه زرد، رنگ زرد، کیفیت و استحکام پوسته، مورد ارزیابی قرار گرفت. نتایج نشان دهنده بود که کاهش ۱۰ درصدی پروتئین خام جیره و همچنین افزایش ۲۰ درصدی سطح ترتوئین جیره هیچ گونه تأثیر معنی‌داری بر میانگین مصرف خوراک روزهای تخم‌مرغ و باره‌های روزانه تخم‌مرغ، ضریب تبدیل خوراک و همچنین شاخه‌های کیفیت تخم مرغ مانند واحد ها، شاخه زرد، ضخامت و استحکام پوسته نداشت. اما کاهش ۱۰ درصدی پروتئین خام سبب کاهش وزن تخم‌مرغ در هر سه بذری زمانی گردید (P<0.001). در سایر دیگر چند کاهش ۱۰ درصدی پروتئین چیره هیچ گونه تأثیر نامطلوبی بر شاخه‌های طول پرز، عمق کریپت و نسبت طول پرز به عمق کریپت نداشت. اما تغذیه این سطح از پروتئین موجب کاهش تعداد نسبی سلول‌های جامی ناحیه رژنوم شد. به این امر با افزودن سطح ۴۰ درصد ترتوئین جیره‌های خشک‌تری (P<0.001) ۱۰ درصدی پروتئین خام جیره رژنوم تخم‌گذار تأثیر نامطلوبی بر صفات عملکردی کیفیت تخم مرغ و ساختار بافتی رژنوم مرغهای تخم‌گذار نداشت. اما با این وجود، بیشترین تعداد نسبی سلول‌های جامی رژنوم زمانی حاصل گردید که از بالاترین سطح ترتوئین استفاده شد.

واژه‌های کلیدی: مرغهای تخم‌گذار، پروتئین، ترتوئین، عملکرد، کیفیت تخم مرغ، ساختار بافتی رژنوم
Effect of feeding different protein and threonine levels on performance, egg quality and histological structure of jejumun in laying hens

A Moghaddas¹, AH Mahdavi²*, AH Samie² and MA Abassi¹

Received: August 13, 2012 Accepted: May 1, 2012
¹MSc Student, Department of Animal Sciences, Isfahan University of Technology, Isfahan, Iran
²Assistant professor, Department of Animal Sciences, Isfahan University of Technology, Isfahan, Iran
*Corresponding author: E mail: mahdavi@cc.iut.ac.ir

Abstract
This experiment was designed to evaluate the effects of different levels of dietary crude protein and threonine on performance, egg quality and histological structure of jejumun in laying hens. One hundred and eighty 48-week old white leghorn hens (Hy-Line, W-36) were randomly assigned to a 3x3 factorial arrangement of treatments based on a completely randomized design that consisted of 9 dietary treatments with 4 replicates of 12 birds each. Experimental diets were included three levels of crude protein (90, 95 and 100% of Hy-Line W36 recommendations) and three levels of dietary threonine (100, 110 and 120% of Hy-Line W36 specifications). The experimental period lasted for a total of 10 weeks and egg quality and performance parameters of laying hens were assessed two times at the end of 5th and 10th weeks of experiment. At final day of trial, two hens per cage were slaughtered to investigate the influence of dietary treatments on jejunal histological structure. Our results showed that decrease in dietary crude protein percent up to 10% and increase of dietary threonine percent up to 20% had no significant effect on average daily feed consumption, egg production, egg mass, feed conversion ratio, Haugh unit, yolk index and eggshell thickness and hardness. Nonetheless, feeding low-crude protein diets caused to significant decrease on the average of egg weight (P<0.05). On the other hand, although dietary crude protein reduction had no remarkable effects on villus height, crypt depth and the ratio of villus height to crypt depth, fortification of low-crude protein diets (90% of recommendations) decreased the relative jejunal goblet cell numbers; however, supplementation of diets with 120% threonine could compensate these alterations. In conclusion, although reduction of dietary crude protein level up to 10% had no adverse impact on performance, egg quality and jejunal histological structure of laying hens, the highest relative goblet cell numbers observed when the birds fed high-threonine diets.

Keywords: Laying Hens, Protein, Threonine, Performance, Egg quality, Intestinal histology

در حالی که اظهار علاقه فراوانی جهید استفاده از جهیره غذایی بر پرندگان پایین‌هرام با استحباب آمینه‌سان‌شده در محیط مرگ‌و‌خورایی تخم‌گذارش به وجود آمده است. زیرا مختصات می‌توانند که بتواند جهید و تکامل بافت ایپتیوم روده و انجام

ای، فرضیه‌ها قابل ملاحظه‌ای را جهید کاهش زیستی خوراک و کاهش دفع نیتروزر در محیط پیدا نموده‌اند (خواجه‌الی و همکاران 2007). قابلیت دسترسی تجاری به استحباب آمینه سنتیک مانند میوپن، لیزین و تری‌تیون، امکان کاهش سطح پروتئین جهیره لازم می‌باشد. فراهم می‌نماید که نیاز‌های آمیناسیدهای طیور جهید نکهگرد و رشد بیشتر آنها تأمین گردد. کاهش سطح پروتئین جهیره، بزارت استفاده از نیتروزر را بهبود بخشیده و دفع نیتروزر را کاهش می‌دهد. همچنین تبادل حرارتی طیور در محیط استحباب بالا بهبود بخشیده و سطح آمینواسید را در بستر کاهش می‌دهد. یک بررسی نشان داده‌ها نشان داده که استحباب آمینه‌های کاهش‌دار و لیزین در کاهش طیور بالا بهبودی‌ای داشته و در نتیجه سطح پروتئین جهیره، ترکیب آمینواسیدهای جهیره می‌تواند با نیاز‌های آمینواسیدهای طیور برای نگهداری، رشد پیوسته یافته‌ها و تولید استحباب تطبیق یابد (پارامیستر و همکاران 2002).
بهینه وظیفه پردازه مخاطی حافظ احمدی محض. با این وجود، مطالعات در راستای بررسی اثرات مختلف سطوح مختلف این استادیمیه با سطح مختلف پروتئین بر عملکرد و افزایش خاصیت روده، کوچک مرغهای تخم‌گذار محدود است. لذا مطالعه حاضر با هدف بررسی اثرات استفاده از سطوح مختلف استادیمیه ترموتون همراه با کامی مبتکر یافتنی پروتئین چرخه بر عملکرد، صفات کهی تخیم مرغ و سابکتاری پرتوی مرغهای تخم‌گذار طراحی و اجرای پژوهشی.

مواد و روش‌ها
برندهها، چرخه و طرح آزمایشی
در آزمایش حاضر، تعداد 180 قطعه مرغ تخیم‌گذار سویه های-لاین (Hy-Line، W36) که چهل و هشت هفته، در قالب یک آزمایش فاکتوریل 2 × 10 به یک طرح کاملاً تصادفی با سطح پروتئین (تصویبی راهنمای پرورش های-لاین W36، کامش 5 و 10 درصد پروتئین جام شامل 9/16، 14/16 و 12 درصد جیره) و سطح ترموتون (100، 160 و 200 درصد توصیه راهنمای پرورش های-لاین W36 شامل 6/4، 3/4 و 1/4 درصد جیره) و با 4 تکرار (5 قطعه مرغ در هر قطعه) مورد استفاده قرار گرفتند. آزمایش به مدت 70 روز به طول انجامید و صفات مربوط به عملکرد تولیدی و کوچکی تخیم مرغ در دو دوره 25 روزه مورد بررسی قرار گرفتند. پس از 70 روز، از آزار به آب و چرخه‌های آزمایشی داشتند.

نموده برداری‌ها و جمع‌آوری داده‌ها

صفات تولیدی
در روز نخست آزمایش دانخوری‌ها کاملاً تمیز گردید و سپس جیره آزمایشی‌ها در هر قطعه از قرار گرفته در روز 36 و 37 مقدار پاقی‌زدنی خوراک مرغ به طور جداگانه جمع‌آوری و توزین گردید. با کم
جدول 1- اجزای تشکیل دهنده و ترکیب شیمیایی جیره‌های پایه مورد استفاده مرغ‌های تخم‌گذار

<table>
<thead>
<tr>
<th>اجزای جیره (درصد)</th>
<th>جیره پایه اول</th>
<th>جیره پایه دوم</th>
<th>جیره پایه سوم</th>
</tr>
</thead>
<tbody>
<tr>
<td>نتر</td>
<td>58/00</td>
<td>58/00</td>
<td>58/00</td>
</tr>
<tr>
<td>کتچاله سویا</td>
<td>32/94</td>
<td>32/94</td>
<td>32/94</td>
</tr>
<tr>
<td>نشاسته نتر</td>
<td>0/95</td>
<td>0/95</td>
<td>0/95</td>
</tr>
<tr>
<td>روغن سویا</td>
<td>2/10</td>
<td>2/10</td>
<td>2/10</td>
</tr>
<tr>
<td>پودر چربی</td>
<td>2/26</td>
<td>2/26</td>
<td>2/26</td>
</tr>
<tr>
<td>مونولکسیم سفاف</td>
<td>2/50</td>
<td>2/50</td>
<td>2/50</td>
</tr>
<tr>
<td>صدف معدنی</td>
<td>0/50</td>
<td>0/50</td>
<td>0/50</td>
</tr>
<tr>
<td>کربنات کلسیم</td>
<td>2/00</td>
<td>2/00</td>
<td>2/00</td>
</tr>
<tr>
<td>میتیونین-DL</td>
<td>0/17</td>
<td>0/17</td>
<td>0/17</td>
</tr>
<tr>
<td>ل-امینهیدروکلراید</td>
<td>0/20</td>
<td>0/20</td>
<td>0/20</td>
</tr>
<tr>
<td>ترزوتونین</td>
<td>0/10</td>
<td>0/10</td>
<td>0/10</td>
</tr>
<tr>
<td>نمک</td>
<td>0/30</td>
<td>0/30</td>
<td>0/30</td>
</tr>
<tr>
<td>بی‌گیربات سدیم</td>
<td>0/10</td>
<td>0/10</td>
<td>0/10</td>
</tr>
<tr>
<td>مکمل ویتامین</td>
<td>0/20</td>
<td>0/20</td>
<td>0/20</td>
</tr>
<tr>
<td>مکمل مواد معدنی</td>
<td>0/25</td>
<td>0/25</td>
<td>0/25</td>
</tr>
</tbody>
</table>

ترکیب شیمیایی

انرژی قابل سوخت و ساز (کیلوکالری بر کیلوگرم)

پروتئین خام (درصد) | 0/37 |
فسفر قابل دسترس (درصد) | 0/48 |
کلسیم (درصد) | 0/44 |
میتیونین (درصد) | 0/44 |
ل-امینهیدروکلراید | 0/44 |
میتیونین سیستمتین (درصد) | 0/44 |
تروزوتونین (درصد) | 0/44 |
تروزوتونین (درصد) | 0/44 |
ایزوپرسین (درصد) | 0/44 |

تعادل آنیون-كاتیون جیره

(میلی‌کیلوگرم بر کیلوگرم)

<table>
<thead>
<tr>
<th>افزایش و تاکید</th>
<th>تابع شوابن</th>
<th>تابع شوابن</th>
<th>تابع شوابن</th>
</tr>
</thead>
<tbody>
<tr>
<td>249/79</td>
<td>249/79</td>
<td>249/79</td>
<td>249/79</td>
</tr>
</tbody>
</table>
ارزیابی ویژگیهای کیفی تخم‌مرغ

در روز ۳۱ آزمایش‌های کیفی تخم‌مرغ به‌طور جداگانه انجام گرفت. نمونه‌های ۷۱ آزمایش از هر قسم سه تخم‌مرغ به‌طور تصادفی انتخاب و نمونه‌های آنها بر اساس روش‌های پیشنهادی هوانی‌ها و همکاران (۲۰۱۰) و خواجاعلی و همکاران (۲۰۰۹) ارزیابی گردیده‌اند. هر تخم‌مرغ، ابتدا توسط ترازیو دوبیتال با دقت ۱/۲ گرم توزین شد و سپس استخراج پوست آن توسط دستگاه اثاثک‌سنجی (FHK, Fujihira Industry Co., Tokyo, Japan) بر اساس نرم‌افزار آماری SAS (۲۰۰۱) اندازه‌گیری و میانگین تیمارها با استفاده از آزمون نسبی مربعات مودل آماری به‌صورت ترکیبی و توزین داده شد. مدل آماری که جهت تجزیه و تحلیل داده‌ها مورد استفاده قرار گرفت به شرح ذیل بود:

\[Y_{ijk} = \mu + A_i + B_j + (AB)_{ij} + e_{ijk} \]

که در این مدل، \(Y_{ij} \) = مقدار هر مشاهده، \(A \) = میانگین مشاهده‌ها، \(A_i \) = مقدار مشاهدهِ هر میانگین، \(B_j \) = اثر سطح از عامل A (سطح پرتوئین)، \((AB)_{ij} \) = اثر سطح از عامل A (سطح پرتوئین) \(B_j \) = S= (سطح پرتوئین)، \(e_{ijk} \) = اثرات بایق‌مراتب مشاهده می‌باشد.

نتایج و بحث

مصرف خوراک زئو‌نوره‌های میانگین مصرف خوراک زئو‌نوره‌های مرغ‌های تخم‌گذار در ۲۵ روز اول، ۲۵ روز دوم و پس از آن به‌طور جداگانه، در جدول ۲ نشان داده شده است. همان‌گونه که مشاهده می‌شود، مطالعه ساختار گلفت زئو‌نوره

در پایان آزمایش دو مرحله از هر تکار به‌طور تصادفی انتخاب و جهت بررسی اثر تیمارهای آزمایشی بر تغییرات ساختار بفتابی زئو‌نوره کشتار گردیدند. سپس نمونه‌های از ناحیه زئو‌نوره و در حدود ۱/۵ سانتی‌متری...
آمیزه محدودکننده متوینین، لازمی و تریپتوفرن به جیره
کم پروتونی طی تغییرات مصرف خوراک تصمیم گیریده
است. این یافته ها می توانند به خوی تفسیر کننده عدم
تأثیر کاهش پروتونی جیره بر مصرف خوراک باشد:
چرا که در جیره های غذای آزمایش حاضر (با هر
سطح از پروتونی)، استیفاده آمیزه محدودکننده
متوینین و لازمی در سطح توصیه شده تا میزان گردیده
بودن لذا نتایج پیانک آن است که در صورت تامین
استیفاده آمیزه محدود کننده، کاهش 10 درصدی
پروتونی جیره مصرف تخگدار تاثیر نامطلوبی بر
مصرف خوراک نداشت. است

تغییرات وزن بدن
در مطالعه حاضر تغییرات سطوح پروتونی و تریپتونی
جیره تأثیر بر تغییرات وزن بدن در طول مدت
آزمایش نشان نداد (جدول ۱). به طور کلی در انتهای
دوره این تغییرات وزن بروز می گردد. با تغییرات،
به صورت میانگین 1/1 کیلوگرمی وزن در که
مشاهده گردید. اگرچه نتایج بسیاری از تحقیقات گذشته
نیز مؤثر عدم تأثیر سطوح مختلف تریپتونین (ایشیاسی
و همکاران ۱۹۸ و نیمی ۲۱۶) و پروتونی (لیپسون و
کاستون ۱۹۹۱ ملزوزی و همکاران ۱۹۹۱ و رابرتس و
همکاران ۱۹۹۱) بر تغییرات وزن بدن مصرف تخگدار
است، ولی نواک و همکاران (۲۰۰۱) ثابت کردن که
مصرف جیره مصرف پروتونی در مدت زمان طولانی
باعث کاهش میزان در اضافه وزن بدن در مصرف
تخگدار گردیده است. سامزر و همکاران (۱۹۹۱) نیز
نشان دادند که با کاهش قابل ملاحظه سطح پروتونی
جیره مصرف تخگدار از ۱۷ به ۰ درصد و تغییره
پرندگان به مدت ۲۴ هفته، وزن بدن کمتری قابل
مشاهده است. بحث می رود آزمایش کننده همه به دلیل
کوتاه تر بودن دوره آزمایش و هم که اکثر سطح
پروتونی جیره، تغییرات قابل ملاحظه ای در وزن
پرندگان تخگدار مشاهده نگردید.

در هر سه باین، تغییر سطوح مختلف پروتونی و
تریپتونی تغییر قابل ملاحظه یا در مصرف خوراک
پرندگان ایجاد نکرده است. میزان انرژی جیره و دما
میت یش از مهم ترین عوامل شانخته شده است که می
توانند بر مصرف خوراک پرندگان تأثیرگذار باشند. از
سوی دیگر نباید نگهداری پرندگان تحت تاثیر وزن آنها
بوده و این تاثیر در حیوانات سنگین وزن بیشتر است
(چنگ و همکاران ۱۹۹۸). همان گونه که در جدول ۲
ارائه گردیده است، در آزمایش حاضر، وزن اولیه
پرندگان تأثیر معنی داری را نشان نداد. لذا می توان
نتیجه گرفت که نباید نگهداری مصرف در گروه‌های
مختلف یکسان بوده و با توجه به اینکه مقدر انرژی
جیره و دما مبتنی بر همه گروه مسابقه بود.
مصرف خوراک یکسانی مصرف نموده و تغییر
سطح پروتونی و تریپتونی این مقدار را تحت تاثیر
قرار نداده است (۰/۷۷). این نتیجه همچون با تا
متغیرات مارزین و همکاران ۱۹۹۹، نیمی ۲۱۶ و آزم
و همکاران ۲۱۶ می باشد که مشاهده داشتند با تغییر
سطح بیش از تأثیر تریپتونی، مصرف خوراک تغییر
نیافته است. همچنین فردی و همکاران ۲۰۰۱ بیان
نمودند که مصرف سطوح کمتر از ۰۴ درصد تریپتون
در جیره مصرف تخگدار سبب کاهش مصرف خوراک
می‌گردد. که با توجه به اینکه در آزمایش حاضر
از سطوح بالاتر تریپتونی در جیره استفاده گردیده بود، این
نتایج تأیید می‌گردد.

همچنین نواک و همکاران (۲۰۰۱) نیز
می‌گویند که با توجه به اینکه در آزمایش حاضر
از سطوح بالاتر تریپتونی در جیره استفاده گردیده بود، این
نتایج تأیید می‌گردد.

اعتماد تأثیر سطوح مختلف پروتونی جیره بر مصرف
خوراک نیز نسبت به پیشنهادات مطالعات پیشین (لیپسون
و کاستون ۱۹۹۱ ملزوزی و همکاران ۱۹۹۱ و رابرتس و
همکاران ۱۹۹۱) بر تغییرات وزن بدن مصرف تخگدار
است، ولی نواک و همکاران (۲۰۰۱) ثابت کردن که
مصرف جیره مصرف پروتونی در مدت زمان طولانی
باعث کاهش میزان در اضافه وزن بدن در مصرف
تخگدار گردیده است. سامزر و همکاران (۱۹۹۱) نیز
نشان دادند که با کاهش قابل ملاحظه سطح پروتونی
جیره مصرف تخگدار از ۱۷ به ۰ درصد و تغییره
پرندگان به مدت ۲۴ هفته، وزن بدن کمتری قابل
مشاهده است. بحث می رود آزمایش کننده همه به دلیل
کوتاه تر بودن دوره آزمایش و هم که اکثر سطح
پروتونی جیره، تغییرات قابل ملاحظه ای در وزن
پرندگان تخگدار مشاهده نگردید.

تولید محصولات مصرف خوراک، روابط و تاثیرات
به دلیل عدم تعامل اسیدهای آمیزه کاهش یافته
است، اما آن‌ها گزارش نمودند که با افزودن اسیدهای

125

2

85
جدول ۲- اثر سطوح مختلف پروتئین و ترتوین جیره بر مصرف خوراک روزانه و تغییرات وزن بدن رعاه‌های ۳۵ روز دوره

<table>
<thead>
<tr>
<th>سطوح ترتوین</th>
<th>سطوح پروتئین (درصد جیوه)</th>
<th>میانگین وزن ون</th>
<th>تغییرات وزن</th>
<th>وزن اولیه</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۸۴/۳۰</td>
<td>۱۰۰/۰۶</td>
<td>۱۰۴/۷۰</td>
</tr>
<tr>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۸۷/۷۸</td>
<td>۱۰۰/۰۳</td>
<td>۱۰۴/۲۰</td>
</tr>
<tr>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۸۴/۶۵</td>
<td>۱۰۰/۰۹</td>
<td>۱۰۴/۷۲</td>
</tr>
<tr>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۸۷/۷۸</td>
<td>۱۰۰/۰۳</td>
<td>۱۰۴/۲۰</td>
</tr>
<tr>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۸۴/۳۰</td>
<td>۱۰۰/۰۶</td>
<td>۱۰۴/۷۰</td>
</tr>
</tbody>
</table>

شده توسط راهمانی پورورش سویه مورد آزمون (تحقیقات بین‌المللی‌های-لاین ۲۰۰۹) تأیین گردید و لذا
تندب بخشی از پروتئین خام جیره که تایم کننده

درصد تولد تخم‌مرغ

درصد تولد تخم‌مرغ یکی از تأثیر تغییر سطوح پروتئین و ترتوین

جیره غلیانی بر درصد تولد تخم‌مرغ در جدول ۲ آرائه

گردیده است. کاهش سطح پروتئین جیره، تاثیری بر

میزان تولد تخم‌مرغ در دوره‌های اول، دوم و کل دوره

تداشت. در این تحقیق تمامی اسیدهای آمیتی حدود

کنندن در هر سه سطح پروتئین، بر اساس نیاز توصیه

عملکرد تولیدی

درصد تولد تخم‌مرغ

تابع حاسی از تأثیر تغییر سطوح پروتئین و ترتوین

جیره غلیانی بر درصد تولد تخم‌مرغ در جدول ۲ آرائه

گردیده است. کاهش سطح پروتئین جیره، تاثیری بر

میزان تولد تخم‌مرغ در دوره‌های اول، دوم و کل دوره

تداشت. در این تحقیق تمامی اسیدهای آمیتی حدود

کنندن در هر سه سطح پروتئین، بر اساس نیاز توصیه
درصد در جهیره غذاهای مرغ‌های تخم‌گذار، سبب افت چشمگیر درصد تولید تخم‌مرغ گردید: اما این وجود اضافه نمونه‌های تخم‌مرغ‌های متوسط و لاپیزه به جهیره کم‌پروتئین، درصد تولید را تنها به طور قابل‌توجه بهبود داد. آمارکار و آماری (2014) در مطالعه خود به خوبی نشان دادند که اگرچه کاهش کمتر سطح پروتئین خام (از 16 به ۸ درصد جهیره) نیز، درصد تولید را به شکل معنی داری کاهش داد، اما افزودن اسیدهای آمینه لاپیزه، متوسط و لاپیزه‌پان را سطح توصیه شده درصد تولید را تا سطح گروه شاهد بهبود بخشید. این نتایج با یافته‌های آزمایش حاضر مطابقت کامل دارد.

عملکرد مهم دیگری که می‌تواند در پشت تأثیر جهیره‌ها کم پروتئین بر نرخ تولید تخم‌مرغ دخیل باشد، مدت زمان مصرف این جهیره‌ها و دوره تولیدی مرغ‌های تخمرکار است. ملتوئی و همکاران (2011) ثابت نمودند که کاهش نسبت پروتئین جهیره در ۸ هفته اول دوره تولید تخم مرغ، درصد تولید تاثیری نداشت. در صورتی که در ۸ هفته دوم تخم‌های مRIPT و دارای گرندی، همچنین نواک و همکاران (2011) نیز نشان دادند که کاهش نسبت پروتئین جهیره در دوره ۲۰ تا ۴۲ هفته‌ای اثر قابل توجهی بر میزان تولید تخم‌گذاری داشت. اما اینکه در طی دوره دوم ۱۲ هفته، دریافت روزانه ۱۲ غرم پروتئین خام با آزمایش مرغ، درصد تولید تخم‌مرغ را کاهش داد. یافته‌های رابرتز و همکاران (2007) نیز معنی دارد که اگر کاهش جهیره مرغ‌های تخم‌گذار، نرخ تخم‌گذاری در دوره اول پیکسان بوده، در حالتی که در دوره دوم ۱۵ درصد در این دوره ۲۰ درصد و در دوره سوم ۲/۷ درصد کاهش یافته، به طور مشابه خواهی‌ها و همکاران (2008) نیز در طی یک مطالعه ۱۲ ماهه تأثیر کاهش سطح پروتئین جهیره بر درصد تولید را تنها در ۴ ماهه آخر معنی‌دار بیان نمودند. با این وجود مطالعه ونو و همکاران (2007) مؤثر عدم تأثیر کاهش سطح پروتئین جهیره بر میزان تولید تخم‌مرغ در دوره زمان
جدول 3- اثر تغذیه سطوح مختلف پروتئین و ترنتین بر درصد تولید و میانگین وزن تخم‌مرغ مرغای تخم‌دار

<table>
<thead>
<tr>
<th>وزن تخم‌مرغ (کرم)</th>
<th>سطح پروتئین</th>
<th>سطح ترنتین (درصد)</th>
<th>سطح ترنتین (درصد جیره)</th>
</tr>
</thead>
<tbody>
<tr>
<td>دوره اول</td>
<td>دوره دوم</td>
<td>دوره اول</td>
<td>دوره دوم</td>
</tr>
<tr>
<td>6/68</td>
<td>7/43</td>
<td>8/52</td>
<td>8/57</td>
</tr>
<tr>
<td>6/71</td>
<td>8/53</td>
<td>7/92</td>
<td>7/97</td>
</tr>
<tr>
<td>SEM</td>
<td>Sطح احتمال</td>
<td>SEM</td>
<td>Sطح احتمال</td>
</tr>
</tbody>
</table>

میانگین وزن تخم‌مرغ

یافته‌های مربوط به تغییرات وزن تخم‌مرغ در جدول 3 ارائه گردیده است. میانگین وزن تخم‌مرغ‌های حامل از همه گروه‌های آزمایشی در 25 روز دوم نسبت به همان گروه‌های آزمایشی در 20 روز بیشتر بود. این تغییرات با افزایش سن مرغ‌ها و افزایش ارتفاع سطح امکان‌پذیر می‌شود. با مقایسه میانگین ها می‌توان دریافت که در هر سه باره زمانی کاهش 15 درصدی پروتئین چهار موجب کاهش میانگین دار وزن تخم‌مرغ‌های حامل از همه گروه‌های آزمایشی شده است.}

می‌توان گفت که در هر سه باره زمانی کاهش 15 درصدی پروتئین چهار موجب کاهش میانگین دار وزن تخم‌مرغ‌های حامل از همه گروه‌های آزمایشی شده است.

در باند تولید گاز رترناک در مرحله ای از جستجوی تحقیقات (پس از اینکه منابع وسایل و تحقیقات مورد بررسی گردید، ۹۹۹، ۹۹۹، ۹۹۹ و همکاران ۹۹۹۹) به خصوص حضور و تولید جنگلی و پوسته در زنگ تخریب خوراکی (جدول ۲)، در این زمینه گروه‌گاه و همکاران (۹۹۹) نیز تغییری محسوسی را در باند روزانه تولید تخریب (با تغییر سطح ۵۵/۴) کسب کردند. تغییرات مطالعه گروه و آنجلس (۹۹۹۹) نیز حاکی از عدم تأثیر سطح مختلف تولید بر خود تولید تخریب می‌باشد.

ضریب تبدیل غذایی

نتایج مربوط به تأثیر سطح مختلف پروتئین و تولید بر ضریب تبدیل غذایی در جدول ۴ ارائه شده است. همان‌گونه که از آن گزارش گردید، در نمونه‌های زمینی تفاوت معنی‌داری برای ضریب تبدیل خوراک در بین گروه‌هایی که مقادیر مختلف پروتئین و یا تولید دریافت نمودند وجود نداشت. ولی به لحاظ اصول کمتر ضریب تبدیل غذایی در مزارع غذایی که سطح دوم پروتئین را مصرف کرده بودند کمتر بود که به یک سبب تولید تخریب‌های سطح ۵۵/۴ نسبت به گروهی بود که خوراک گردید که جیره یا ۹۹ درصد پروتئین به آنها اختصاص یافت. بود. هرچند در مطالعه دیگری از اندوزن آمیونسی‌های متونی، ترودین و تری‌پرویون فلزی جیره کمپروتئین باعث بهبود معنی‌دار ضریب تبدیل خوراک گردید (کشمرز و استیک، ۲۰۰۴)، اما نتایج حاضر هم‌سوز با یافته‌های پلکسوسیا (۲۰۰۱)، نواک و همکاران (۲۰۰۱) و خوشنیک معی و همکاران (۲۰۰۸) می‌باشد که بیان داشتند که تغییر جیره
راهب مستقیم و شدیدتری با ارتفاع سفیده دار. ارتفاع سفیده نیز به قوام آن بستگی ندارد ممکن است تحت تأثیر مقادیر آمینوسایدیهای قرار گیرد که در ساخت پروتئین‌های سفیده به‌خصوص گلیکروپروتئین‌ها و مویسین، که عامل اصلی حالت آن سفیده می‌باشد، مشارکت دارد. و لی علاوه بر این، ایجاد هوا مناسب با درصد آب و مواد محلول موجود در تخم مرغ نیز می‌تواند تغییر یابد. این مطالعه تغییر سطوح پروتئین‌های تأثیری بر واحد هوا در دوره اول و چه در دوره دوم داشت و در این زمینه نتایج مختلفی توسط محققین گزارش شده است. خواجاعلی و همکاران (۲۰۰۸) در طول یک سال تغییر در ارتفاع سفیده تخم‌مرغ‌های حاصل از مرغ‌های کم گرفته‌های مقادیر تابتاً سیدهای آمینوسایدیهای لازمی نریافت کرده بودند، مشاهده شد که در صورتی که قبلاً از آن لیسون و کاستوس (۱۹۹۱) با تغذیه جیره‌های حاوی ۱۴/۸ درصد پروتئین خام، ارتفاع سفید به‌شکلی در هفت‌شبان او لولید نسبت به جیره‌های با پروتئین بالاتر، به‌دست آورده بودند. همچنین در آزمایش برگرزی نیز که توسط نراک و همکاران (۲۰۰۶) یک تحقیق پذیرفته و یک واحد هوا در اولین تولید، بین جیره‌های با پروتئین مقاون، مشابه بود اما در اواخر تولید با تعیین سطح ۱۲ درصد پروتئین، یک واحد و ۱/۵ واحد افزایش یافت. لذا هر چند پروتئین جیره‌ها در آزمایش حاضر تا سطح ۱۲/۸۳ درصد کاهش یافت. اما به‌نظر می‌رسد که جهت مشاهده تأثیر جیره‌های کم پروتئین با تغییر و کاهش هوا، نیاز به یک دوره طولانی مصرف این گونه جیره‌ها می‌باشد.

های کمپروتیون، ضریب تبدیل غذاپی مرغ‌های تخم‌گذار
تقویت قابل توجهی را نشان داده است.

افزایش سطح ترزویل جیره نیز در هیچ یک از دوره‌های هورآموز، تأثیری بر ضریب تبدیل خوراک نشان نداد (جدول ۴). مارتینی و همکاران (۱۹۹۹) با افزایش درصد ترزویل جیره مرغان تخم‌گذار از ۴۷/۰ به ۵۰/۰ ضریب تبدیل به‌ستگی به‌دست آورده‌اند. هرچند در سطوح بالاتر این آمینوسید به‌سودی در این صفت مهابه شناسود. در آزمایش این‌گونه نتایجی پایدار به‌دتبره وجود داشت. در روز به ازای هر مربع در اواک دوره تولید بروارد شد (ایسپیناشی و همکاران ۱۹۹۸) اما این مقادیر برای دوره تولید پس از پروریه ۵۵ میلی‌گرم گزارش گردید (گوپر و آنجلس ۲۰۰۹). در مطالعه‌ها، مصرف روزانه ترزویل در گذشته مقدار ۱۱۰ میلی‌گرم در روز بود که بر این اساس عدم ضریب سطح بیشتر آن بر ضریب تبدیل خوراکی منطبق به نظر می‌رسد. همچنین آزمایش و همکاران (۱۹۹۵) به‌یک‌نیز با استفاده از سطوح ۱۶۳/۰، تا ۸۷/۰ درصد این استدامةه، تغییری در ضریب تبدیل خوراک نیافتند. لذا تاکنین باید گرو آن است که کافی ۱۰ درصدی پروتئین جیره غذاپی (دوند نیز به افزایش با افزایش شیئی مقادیر توصیه شده است) باید این ضریبی در مقداری کمتری شده استفاده آمیزه‌های ضروری) هیچ گونه تأثیر نامطلوبی بر ضریب تبدیل غذاپی پرندگان تخم‌گذار ندارد.

صمات کیفی تخم‌مرغ
نتایج مربوط به صفات کیفی تخم‌مرغ شامل واحد هوا، شاخ‌چک، زردگی، رنگ و کیفیت خوراک بود. استحکام پوسته و ضخامت آن در پایان دوره اول (روز ۳۰ آزمایش) و پایان دوره دوم (روز ۷۰ آزمایش) بتر بود که در جداول ۵ و ۶ نشان داده شده است.

واحد هوا
این صفت به عنوان شاخص کیفیت سفیده در نظر گرفته می‌شود. با توجه به نحوه محاسبه واحد هوا، معلوم می‌گردد که این شاخص نسبت عکس با وزن تخم‌مرغ ولی
جدول ۳- اثر تغذیه سطوح مختلف بروتین و ترونین بر بازده روزانه تولید تخمخر و ضریب تبدیل غذایی

<table>
<thead>
<tr>
<th>ضریب تبدیل غذایی</th>
<th>بازده روزانه تولید تخمخر</th>
<th>ترونین</th>
<th>بروتین</th>
<th>سطوح بروتین</th>
<th>(درصد چیزه)</th>
</tr>
</thead>
<tbody>
<tr>
<td>دوره اول</td>
<td>دوره دوم</td>
<td>دوره اول</td>
<td>دوره دوم</td>
<td>دوره اول</td>
<td>دوره دوم</td>
</tr>
<tr>
<td>۱/۰۲</td>
<td>۱/۰۳</td>
<td>۱/۰۴</td>
<td>۱/۰۵</td>
<td>۱/۰۶</td>
<td>۱/۰۷</td>
</tr>
<tr>
<td>۱/۱۱</td>
<td>۱/۱۲</td>
<td>۱/۱۳</td>
<td>۱/۱۴</td>
<td>۱/۱۵</td>
<td>۱/۱۶</td>
</tr>
<tr>
<td>۱/۲۰</td>
<td>۱/۲۱</td>
<td>۱/۲۲</td>
<td>۱/۲۳</td>
<td>۱/۲۴</td>
<td>۱/۲۵</td>
</tr>
<tr>
<td>۱/۳۰</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱/۴۰</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱/۵۰</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱/۶۰</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱/۷۰</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱/۸۰</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

از آن جمله می‌توان به مطالعه نیمار (۲۰۰۵) اشاره نمود که بیان نمود با مصرف مقایسه بسیار بالای ترونین اثرپذیری تخمخرگ‌ها در میان دوره و پایان دوره حاکی از آن است که در طول این پژوهش، افزایش میزان ترونین جهت نیز تغیری در واحد ها ایجاد شده. تاکنون مطالعات بسیار اندکی در رابطه با تاثیر این اسید آمیده بر کیفیت سفیده و یا واحد ها صورت گرفته است که هرچند ترونین فراوانی اسد آمیده در بروتین اوروموزی سفیده می‌باشد (نواک و همکاران ۲۰۰۹) اما ارزیابی تخمخرگ‌ها در میان دوره و پایان دوره حاکی از آن است که در طول این پژوهش، افزایش میزان ترونین جهت نیز تغیری در واحد ها ایجاد شده. تاکنون مطالعات بسیار اندکی در رابطه با تاثیر این اسید آمیده بر کیفیت سفیده و یا واحد ها صورت گرفته است که
جدول ۵- تأثیر سطح مختلف پروتئین و ترتوین بر صفات کیفی تخم‌مرغ در پایان ۲۵ روز اول

<table>
<thead>
<tr>
<th>ضخامت پوسته (mm)</th>
<th>استحکام پوسته (Kg/cm²)</th>
<th>شاخه رنگ زره</th>
<th>شاخه زره</th>
<th>واحد ها (درصد جیره)</th>
<th>سطح پروتئین</th>
<th>سطح ترتوین (درصد جیره)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.27</td>
<td>3/12</td>
<td>6/15</td>
<td>43/43</td>
<td>82/77</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>0.32</td>
<td>2/81</td>
<td>6/17</td>
<td>43/43</td>
<td>87/49</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>0.38</td>
<td>2/96</td>
<td>6/23</td>
<td>43/43</td>
<td>80/10</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>0.37</td>
<td>2/94</td>
<td>6/23</td>
<td>43/43</td>
<td>80/90</td>
<td>95</td>
<td>100</td>
</tr>
<tr>
<td>0.39</td>
<td>2/11</td>
<td>6/50</td>
<td>43/43</td>
<td>87/08</td>
<td>95</td>
<td>100</td>
</tr>
<tr>
<td>0.36</td>
<td>2/94</td>
<td>6/23</td>
<td>44/43</td>
<td>83/78</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td>0.37</td>
<td>2/83</td>
<td>6/29</td>
<td>43/43</td>
<td>83/25</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td>0.36</td>
<td>2/94</td>
<td>6/47</td>
<td>43/43</td>
<td>83/78</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>0.37</td>
<td>2/58</td>
<td>6/43</td>
<td>43/43</td>
<td>88/08</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>0.31</td>
<td>0.23</td>
<td>0.17</td>
<td>0.08</td>
<td>0.21</td>
<td>SEM</td>
<td>SEM</td>
</tr>
<tr>
<td>0.18</td>
<td>0.27</td>
<td>0.19</td>
<td>0.10</td>
<td>0.17</td>
<td>0.27</td>
<td>0.10</td>
</tr>
<tr>
<td>0.27</td>
<td>2/96</td>
<td>6/18</td>
<td>44/44</td>
<td>84/79</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>0.32</td>
<td>2/96</td>
<td>6/18</td>
<td>44/44</td>
<td>84/79</td>
<td>95</td>
<td>90</td>
</tr>
<tr>
<td>0.32</td>
<td>2/96</td>
<td>6/18</td>
<td>44/44</td>
<td>84/79</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>0.35</td>
<td>0.23</td>
<td>0.17</td>
<td>0.08</td>
<td>0.21</td>
<td>SEM</td>
<td>SEM</td>
</tr>
<tr>
<td>0.36</td>
<td>2/98</td>
<td>6/25</td>
<td>44/44</td>
<td>83/78</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>0.37</td>
<td>2/97</td>
<td>6/27</td>
<td>43/43</td>
<td>80/27</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>0.37</td>
<td>2/88</td>
<td>6/28</td>
<td>44/44</td>
<td>80/15</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>0.37</td>
<td>0.27</td>
<td>0.17</td>
<td>0.08</td>
<td>0.21</td>
<td>SEM</td>
<td>SEM</td>
</tr>
<tr>
<td>0.35</td>
<td>2/98</td>
<td>6/25</td>
<td>44/44</td>
<td>83/78</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>0.36</td>
<td>2/97</td>
<td>6/27</td>
<td>43/43</td>
<td>80/27</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>0.37</td>
<td>2/88</td>
<td>6/28</td>
<td>44/44</td>
<td>80/15</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>0.37</td>
<td>0.27</td>
<td>0.17</td>
<td>0.08</td>
<td>0.21</td>
<td>SEM</td>
<td>SEM</td>
</tr>
</tbody>
</table>

احتمال وجود دارکه سطح حداقل پروتئین و ترتوین عرضه شده در آزمایش حاضر نیز، جهت ساخت پروتئین‌های زرهه کافی بوده و لذا این شاخه تحت تأثیر قرار نگرفته است.

شاخه رنگ زره

شاخه زرهه تحت تأثیر تغذیه سطح مختلف پروتئین و ترتوین واقع نگردیده. همچنین که از نظر مواد تشکیل دهنده زرهه تخم‌مرغ، پس از آب و چربی، پروتئین در مقام سوم قرار دارد (هوپالاهی و همکاران ۲۰۰۷). با توجه به اینکه پروتئین‌های زرهه در کبد ساخته می‌شوند و کبد نیز پس از دریافت آمیزی‌سیمایدایی جذب شده ابتدا نیاز خود را برطرف می‌سازد، از اینرو این

احتمال وجود دارکه سطح حداقل پروتئین و ترتوین عرضه شده در آزمایش حاضر نیز، جهت ساخت پروتئین‌های زرهه کافی بوده و لذا این شاخه تحت تأثیر قرار نگرفته است.

شاخه رنگ زرهه

شاخه زرهه تحت تأثیر تغذیه سطح مختلف پروتئین

و ترتوین واقع نگردیده. همچنین که از نظر مواد تشکیل دهنده زرهه تخم‌مرغ، پس از آب و چربی، پروتئین در مقام سوم قرار دارد (هوپالاهی و همکاران ۲۰۰۷). با توجه به اینکه پروتئین‌های زرهه در کبد ساخته می‌شوند و کبد نیز پس از دریافت آمیزی‌سیمایدایی جذب شده ابتدا نیاز خود را برطرف می‌سازد، از اینرو این
پروتئین جهیره تأثیر معنی‌داری بر ضخامت یوسته (خواجغلی و همکاران ۲۰۰۷). ون درصد پروتئین (۲۰۰۷) و رابرتز و همکاران ۲۰۰۶ و وان و همکاران ۲۰۰۷ نوشتند. در رابطه با تأثیر اسپیمینه ترتوتین بر کیفیت یوسته ۲۰۰۵ (۲۰۰۵) دریافت که مصرف این آمینواسید در مقایسه بیش از ۹۲٪ گرم در روز توانست موجب افزایش قابل توجه مقاومت و ضخامت پوست گردیده، حال آنکه در سطوح مشابه با سطوح مورد استفاده در آزمایش حاضر نتایج مشابه حاصل گردید.

بررسی ساختار بافتی زدن‌های در مطالعه حاضر به منظور بررسی تأثیر سطوح مختلف پروتئین و ترتوتین جعابی بر تغییرات ساختار بافتی زدن از ناحیه عمدتاً چرب در روده (هوشن و همکاران ۲۰۰۹)، نمونه‌برداری انجام شد که نتیجه آن در جدول ۷ ارائه گردیده است. همان‌گونه که در این جدول می‌توان ملاحظه نمود، کاهش سطح پروتئین خام یا افزایش درصد ترتوتین جهیره اثر معنی‌داری بر طول پرژ، عمق کریپت و نسبت طول پرژ به عمق کریپت نداشت (۲۰۰۶). به‌طور کلی کریپت‌ها یک شکل‌گیری پرژ محصول شده و سول‌های تمایز نیافته موجود در کریپت می‌داده به ایجاد سلول‌های تکنچریسی‌های مانند سلول‌های یوسته‌ای برای جذب‌کننده‌ای (التراسید) می‌باشند. از این‌رو افزایش عمق کریپت نشان‌هایی از تبیکه برای پوسته ژنوم ۲۰۰۳ و همکاران ۲۰۰۳ و همکاران ۲۰۰۳ (رنگر از ترتوتین ژنوم روده وقتی که تغییر بافت روده و به‌خصوص پرژ را افزایش دهد، می‌تواند سبب افزایش عمق کریپت و کاهش ارتفاع پرژ و نسبت آن به عمق کریپت گردد. به‌عنوان خاص، استفاده از سطوح بالای ۴۵ میلی‌متر در جیره یکی از مهم‌ترین عوامل شناخته شده در این زمینه است (زاژی و همکاران ۱۹۹۴). به‌علاوه لازم به ذکر است که ترتوتین جهیره غذایی خورده‌ها جوان در پایین‌تر به ارتفاع پرژ و نسبت طول در روز ۱۰۰ آزمایش، گرد زدن تولید شده در مرجع‌های که سطح ۱۰ درصد پروتئین خام را مصرف کرده یوسته نسبت به گرد زده گروهی که سطح ۱۰۰ درصد پروتئین به آن تعلق یافته‌بود، شدت بیشتری داشت (۵/۰۲). (۵/۰۲) برابر با اینکه در سطوح درصد به داشت و همکاران ۲۰۰۷ (۲۰۰۷) و وان و همکاران ۲۰۰۷ (۲۰۰۷) نیز هم چون نتایج آزمایش حاضر مؤثر بوده گرد زده هم‌مان با کاهش سطح پروتئین جهیره می‌باشد. کیفیت یوسته پوسته تخم‌مرغ از دو بخش اصلی آلی و معنی تشکیل می‌شود. غشاء آلی در حدود یک سوم از کل ضخامت پوسته را شکل می‌دهد که قسمت عمدی آن از پروتئین ساخته شده است و کربنات کلسیم (کلسیت) بر روی آن روابط می‌کند. همکاران ۲۰۰۷ (۲۰۰۷) ارزیابی کیفیت یوسته در هر دو مرحله نشان می‌دهد که کاهش پروتئین و یا افزایش ترتوتین جهیره غذایی تغییر معنی‌داری در استحکام و ضخامت پوسته ایجاد نموده است (جدول ۶). با این وجود در پایان دوره اول استحکام پوسته تخم‌مرغ به دست آمده از گروهی که سطح ۹۵ درصد پروتئین خام را مصرف کرده بودند به لحاظ عضدی بیشتر بود (۶۲/۵۰). با توجه به اینکه وزن هماهنگ در این گروه بیشتر بود بنابراین انتظار می‌رفت که مقاومت پوسته کاهش یافته باشد. چراکه ثابت کرده‌های است که وزن پوسته تخم‌مرغ یا وزن متغییرات بیشتر به دست می‌آورد. افزایش وزن تخم‌مرغ کیفیت پوسته ممکن است کاهش یابد (روولاند ۱۹۷۹). بنابراین با توجه به آنکه در این سطح پروتئین بهترین استحکام پوسته در سطح ۱۱۰ درصد ترتوتین بروز نموده بود، این احتمال وجود دارد که فراهم نمود سطح بالای این استدیومینه توانسته است مقاومت بلافاصله پوسته را افزایش داده و ازاین روش موجب بهبود استحکام پوسته را فراهم آورده، در بسیاری از مطالعات دیگر نیز همسان به افتخاری آزمایش حاضر، نشان داده شده است که یک در کاهش سطح
۴- تأثیر سطوح مختلف پروپتین و تروتنین بر صفات کیفی تخم‌بردن در پایان ۳۵ روز دوم

<table>
<thead>
<tr>
<th>ضخامت بوسته (mm)</th>
<th>استحکام بوسته (Kg/cm²)</th>
<th>شخاصل رنگ زرده</th>
<th>واحد هاو</th>
<th>سطوح تروتنین (درصد جیره)</th>
<th>سطوح پروپتین (درصد جیره)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۳۹</td>
<td>۲/۷۰</td>
<td>۵/۶۰</td>
<td>۸/۴۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>۰/۴۷</td>
<td>۶/۵۸</td>
<td>۶/۵۰</td>
<td>۸/۸۶</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>۰/۴۸</td>
<td>۷/۹۱</td>
<td>۶/۵۰</td>
<td>۸/۸۶</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>۰/۴۸</td>
<td>۷/۹۱</td>
<td>۶/۵۰</td>
<td>۸/۸۶</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>۰/۵۰</td>
<td>۸/۸۰</td>
<td>۸/۸۶</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>۰/۵۰</td>
<td>۸/۸۰</td>
<td>۸/۸۶</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>۰/۵۰</td>
<td>۸/۸۰</td>
<td>۸/۸۶</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>۰/۶۴</td>
<td>۸/۸۰</td>
<td>۸/۸۶</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
</tbody>
</table>

در بررسی‌های میکروسکوپی، بیشترین تعداد نسبی سلول‌های جامی در رزتم پرندگانی مشاهده گردید که \(\frac{1}{155} \). براساس یافته‌های قبیل (ب ال ۲۰۰۱) و لا و
جدول 7- تأثیر سطوح مختلف برونتین و ترتونین بر بافت شناسی روده کوچک (ژنوم) مرغه‌ی تخم‌گذار

<table>
<thead>
<tr>
<th>سطوح برونتین</th>
<th>طول بزرگ (میکرومتر)</th>
<th>عمق بزرگ (میکرومتر)</th>
<th>تعداد نسبی</th>
<th>بـه عمـق بزرگ</th>
<th>عمـق بزرگ (میکرومتر)</th>
<th>طول بزرگ (میکرومتر)</th>
<th>تعداد نسبی</th>
<th>بـه طـول بزرگ</th>
<th>طـول بزرگ (میکرومتر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+++</td>
<td>5/79</td>
<td>122/67</td>
<td>100</td>
<td>100</td>
<td>75/67</td>
<td>45/64</td>
<td>100</td>
<td>100</td>
<td>75/67</td>
</tr>
<tr>
<td>++</td>
<td>5/23</td>
<td>135/74</td>
<td>95</td>
<td>95</td>
<td>78/64</td>
<td>49/61</td>
<td>95</td>
<td>95</td>
<td>78/64</td>
</tr>
<tr>
<td>+++</td>
<td>5/26</td>
<td>168/63</td>
<td>95</td>
<td>95</td>
<td>83/64</td>
<td>54/62</td>
<td>95</td>
<td>95</td>
<td>83/64</td>
</tr>
<tr>
<td>+</td>
<td>5/86</td>
<td>140/58</td>
<td>95</td>
<td>95</td>
<td>75/64</td>
<td>49/61</td>
<td>95</td>
<td>95</td>
<td>75/64</td>
</tr>
<tr>
<td>++</td>
<td>5/62</td>
<td>134/56</td>
<td>95</td>
<td>95</td>
<td>78/64</td>
<td>49/61</td>
<td>95</td>
<td>95</td>
<td>78/64</td>
</tr>
<tr>
<td>+++</td>
<td>5/47</td>
<td>87/63</td>
<td>95</td>
<td>95</td>
<td>83/64</td>
<td>54/62</td>
<td>95</td>
<td>95</td>
<td>83/64</td>
</tr>
<tr>
<td>++</td>
<td>5/96</td>
<td>8/59</td>
<td>95</td>
<td>95</td>
<td>83/64</td>
<td>54/62</td>
<td>95</td>
<td>95</td>
<td>83/64</td>
</tr>
</tbody>
</table>

SEM: نتایج نمایانگر تغییرات آنتی‌بادی است (بر اساس روش محدودی و همکاران 2010).
اسیدآمینه در مقادیر بسیار کمتر از نیاز، دفع موسمین روی دای کاهش قابل ملاحظه‌ای پافته است. این نتایج حاضر نشان دهنده آن است که کاهش 10 درصدی پروتئین جیره پرندگان تخم‌گذار، همگی گونه‌های تثبیت منفی بر شاخ‌های بینی سلول‌های جذبی روده ناشیته و تنها سپس کاهش نسبی تعداد سلول‌های جامی ناحیه زئونم گردنده است. که این امر نیز با افزودن سطح 120 درصد ترونین و احتمالاً فرامی بیشتر این اسیدآمینه جهت ساخت موسمین قابل جبران بوده است.

سطح مختلف ترتونین، بیان نمودند که تراکم سلون‌های جامی در روزه‌های کوچک و بزرگ خوشه‌های در حال رشد تحت تأثیر قرار نگرفت حال آنکه لاو و همکاران (2007) نشان دادند که کاهش شدید ترونین جیره غذایی می‌تواند تعداد سلون‌های جامی روده کوچک را به صورت نسبی کاهش دهد. هورن و همکاران (2009) نیز با کاهش سطح ترونین جیره غذایی جوجه‌های گوشتخی و اردک تا 40 درصد نیاز به مدت ۷ روز تغییر در تراکم سلون‌های جامی در ناحیه زئونم مشاهده نکردند. اما آنها در انتظار کردن این

نتایج گیری کلی

یافته‌ها آزمایش حاضر بیان کر آن است که هرچند کاهش 10 درصدی پروتئین خام جیره مرغ‌های تخم‌گذار تاثیر نامتولیبی بر صفات عملکردی، کیفیت تخم‌گذار پیشرفت سیر دهنده کاهش 10 درصدی ترتونین خام جیره مرغ‌های تخم‌گذار می‌باشد.

Ball RO, 2001. Threonine requirement and the interaction between threonine intake and gut mucins in pigs.

In: Symposium of the 2001 Degussa Banff Pork Seminar Banff Alberta Canada.

Niemeyer PR, 2005. The impact of supplemental L-threonine in laying hen diets on egg component yield, composition, and functionality, doctor of philosophy, Texas A&M University.

