تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,021 |
تعداد مشاهده مقاله | 52,491,517 |
تعداد دریافت فایل اصل مقاله | 15,218,359 |
Monodromy problem for the degenerate critical points | ||
Computational Methods for Differential Equations | ||
مقاله 6، دوره 3، شماره 1، فروردین 2015، صفحه 1-13 اصل مقاله (194.22 K) | ||
نوع مقاله: Research Paper | ||
نویسندگان | ||
Razie Shafeii Lashkarian* 1؛ Dariush Behmardi Sharifabad2 | ||
1Department of Mathematics, Alzahra University, Vanak, Tehran, Iran | ||
2Dariush Behmardi Sharifabad Department of Mathematics, Alzahra University, Vanak, Tehran, Iran | ||
چکیده | ||
For the polynomial planar vector fields with a hyperbolic or nilpotent critical point at the origin, the monodromy problem has been solved, but for the strongly degenerate critical points this problem is still open. When the critical point is monodromic, the stability problem or the center- focus problem is an open problem too. In this paper we will consider the polynomial planar vector fields with a degenerate critical point at the origin. At first we give some normal form for the systems which has no characteristic directions. Then we consider the systems with some characteristic directions at which the origin is still a monodromic critical point and we give a monodromy criterion. Finally we clarify our work by some examples. | ||
کلیدواژهها | ||
Monodromy problem؛ degenerate critical point؛ hyperbolic critical point؛ nilpotent critical point؛ blow up method | ||
آمار تعداد مشاهده مقاله: 3,614 تعداد دریافت فایل اصل مقاله: 2,199 |