تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,489,158 |
تعداد دریافت فایل اصل مقاله | 15,216,853 |
Positivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations | ||
Computational Methods for Differential Equations | ||
مقاله 5، دوره 2، شماره 4، دی 2014، صفحه 256-267 اصل مقاله (5.52 M) | ||
نوع مقاله: Research Paper | ||
نویسندگان | ||
Mohammad Mehdizadeh Khalsaraei* ؛ Reza Shokri Jahandizi | ||
Faculty of Mathematical Science, University of Maragheh, Maragheh, Iran | ||
چکیده | ||
Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawbacks such as spurious oscillations and negative solutions because of truncation errors and may then become unstable. we propose a new scheme that guarantees a smooth numerical solution, free of spurious oscillations and satisfies the positivity requirement, as is demanded for the advection-diffusion reaction equations. The method is applicable to both advection and diffusion dominated problems. We give some examples from different applications. | ||
کلیدواژهها | ||
Nonstandard finite differences؛ positivity؛ Advection-diffusion reaction equation؛ M-matrix | ||
آمار تعداد مشاهده مقاله: 2,523 تعداد دریافت فایل اصل مقاله: 2,654 |