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Abstract 
Water stress effects on winter and spring leaves anatomy were investigated in experiments conducted at the 
experimental field of SB University of Kerman using five wheat cultivars.Xylem and phloem elements diameter and 
mesophyll, bundle sheath and epidermal cells area were measured in transverse sections prepared from middle parts of 
the leaves. Results showed that significant difference exists among genotypes in terms of anatomical 
characteristic.Results alsoshowed that water stress changes the diameter and the surface area of the cells. However, the 
changes were not the same in winter and spring leaves. The changes in some cases such as xylem vessels diameter were 
considerable.For example, in cultivars Azar2 and Azadi, winter leaves had bigger xylem vessels under water stress 
compared to the normal condition while in spring leaves the xylem diameter was smaller under the same condition. 
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Introduction  

Wheat crop growth and productivity is under the 

strong effects of water stress in the world 

(Reynolds et al. 1994; Blum 1996). Selection of 

drought tolerantgenotypes is considered as an 

alternative way to maintain high grain yield under 

low soil moisture content.Plant features that could 

be used as selection criteria in this regard are 

needed to be identified. Different plant features 

such as leaf anatomy have been considered as 

characters useful for increasing water stress 

tolerance (Jones et al. 1980; Venora and Caleagno 

1991). It has been shown that anatomical changes 

in leaf may help plants to maintain high levels of 

photosynthetic rates and high transpiration 

efficiencies (Evans et al. 1994). Cuticle thickness 

(Rojas et al. 1983), stomatal frequency (Rebetzke 

et al., 2010), length (Bohnert and Jensen, 1996), 

movement and sensitivity (Drake et al., 2013) are 

among anatomical characteristics which are 

believed to be useful for breeding water stress 

tolerant genotypes. Leaf morphological characters 

including leaf area (Zagdanska an Kozdo, 1994), 

shape (Reddy et al., 2004), duration (Verma et al., 

2004) and developing behavior (Hu et al., 2000) 

are also considered as effective characters in 

environmental stress tolerance. 

Vascular tissue systems including xylem and 

phloem are involved in transportation of the 

different compounds. However, the diameter and 

size of the conducting elements are the key factors 

determining the flow rate (Martre, and Durand 

2001).In wheat leaves the venation network 

consists of a series of large or lateral and small or 

intermediate longitudinal veins which are 

connected to each other by transverse veins (Altus 
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and Canny 1985a).The diameter of the lateral 

veins decreases toward the leaf tip while the 

number and the size of the intermediate veins do 

not change along the length of the leaf and their 

water conductivity remains constant (Altus et al. 

1985). However, the xylem vessel diameter is 

considered as the main factor limiting flow rate 

(Altus and Canny 1985b) though the changes of 

the xylem conductivity along the leaf axis also 

depends on the different stages of xylem 

maturation (Martre et al. 2000) and apoplastic and 

symplastic movement of water to the evaporation 

sites inside the leaf at mesophyll cells surface 

(Cochard et al. 2004). 

Anatomical changes of the leaf are used as 

indicators of stress symptoms (Niinemets and 

Sack 2006). In the developing leaves these 

changes have significant effects on 

photosynthesis. For example, palisade mesophyll 

cells length and number in leaves are shown to be 

correlated with photosynthetic capacity (Syvertsen 

et al. 1995). Morphological and anatomical 

modifications under water stress condition are 

associated with leaf structure (Niinemets and Sack 

2006). Transpiration rate of plants growing in dry 

regions is under the control of leaf size (Dias et al. 

2007), epidermal cells and cuticle thickness 

(Wenzel et al. 1997), density (Press 1999) and 

stomatal pore area (Drake. et al., 2013). 

Dehydration tolerance also has been shown to 

improve by other characteristics such as increased 

mechanical resistance of the cell walls by 

increasing the level of lignification (Blum 1996), 

increased succulence, increased water storage 

capacity and accumulation of mucilage 

(Kriedmann 1986). 

Growth responses of plants to water stress are 

the result of changes in cell division, enlargement 

and deposition of cell wall materials (Fricke and 

Flowers 1998). It has been shown that the 

suberised lamellae of the mestome sheath cells 

form an incomplete barrier near the xylem to keep 

separate the oppositely directed fluxes of water 

and assimilates through the sheath (Canny 1986). 

Water stress has shown to prevent cell division 

and growth (Zagdanska and Kozdoj1994).Tissues 

exposed to environments with low water 

availability have generally shown reduction in cell 

size, and increase in vascular tissue and cell wall 

thickness(Guerfel et al.2009).Mesophyll cells are 

more vulnerable to water stress damages 

compared to the bundle sheet cells (Mansoor et al. 

2002). In water stress tolerant sugarcane 

genotypes cell wall thickness increased under 

stress condition (Rojas et al. 1983). Smaller 

epidermal cells were found in Loliumperenne 

under water stress condition (Jones et al. 1980). 

Epidermal and mesophyll cell sizes were shown to 

reduce under water stress condition (Arteimos et 

al. 2002).  
Salinity also is shown toreduce thickness of 

the leaf, cross-sectional area, width, and radii of 

epidermal and mesophyll cells in wheat (Hu et al. 

2005). Reduction in cross-sectional area was 

attributed to a decrease in the size of the vein 

segments and a reduced number of medium and 

small veins (Hu et al. 2005). Hu et al. (2005) 

stated that reduced number of small veins under 

salt stress condition may be responsible for 

limitation of the capacity of translocation of 

nutrients and assimilates. Reduced area of 

protoxylem and metaxylem in midrib and large 
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vein segments in growing tissues may be 

responsible for lower water deposition into the 

growth zone under saline conditions (Hu et al. 

2005). 

Wheat leaves can be classified as winter 

leaves which are usually narrow, small and thin 

with small sheaths growing very close to each 

other and spring leaves which are wide, long and 

thick with large sheath make them to be separated 

from each other. Winter leaves are cold stress 

tolerant and do their metabolism under low 

temperature conditions while spring leaves do 

their best performance under higher temperature 

levels.However, in the growing leaves there are 

three distinct regions. The first is up to 30mm 

from ligule in which cells are dividing. In the 

second region, 30-60mm from ligule, newly 

produced cells are enlarging and cell wall is 

developing. The last region which expands up to 

the leaf tip is photosynthetically active (Hu et al. 

2000). Little information exists regarding the 

effects of environmental factors on the anatomy of 

these leaves. The aims of this study was therefore 

to determine the effects of water stress on the size 

of epidermal, mesophyll and bundle sheath cells 

and vascular tissues of wheat leaves at rosette and 

booting growth stages and also to investigate the 

relationships between the change in the size of 

these cells under water stress condition. 

 

Material and Methods 

Two separate experiments were conducted in pot 

and field conditions at the experimental field of 

KermanUniversity(30° 14"N, 57° 7" E,1775 

meters above sea level). The pot experiment was 

factorial based on randomized complete design 

with three replications in whichhalf of the pots 

were water stressed under a rain shelter. Plants 

were sampled at fourth leaf stagein order to obtain 

winter leaves. Five wheat cultivars including 

Azar2 and Azadi as drought tolerant, Omid and 

Shahpasand as semi-tolerant and Shole as a 

sensitive genotype were used.Seeds were 

germinated on wet tissue papers and were then 

sown at Nov 20, 2011in pots containing a mixture 

of vermiculite and peat (1:1). Soil water holding 

capacity (FC) was determined (Mckim et al. 

1980) before planting and the amount of water 

applied to the pots was adjusted at 100% and 60% 

of FC for normal and water stressed pots, 

respectively. In each replication there were two 

pots for each genotype, one was water 

stresstreatment and the other kept at normal 

condition and all were randomly arranged.During 

the growth period pots were weighted every day 

using an electronic balance (precision=1 gram) 

and irrigated up to their initial weight to maintain 

the growing condition constant. One week after 

full expansion of the fourthleaf, leaf blades of the 

same size from each pot were sampled. From 

each, small segments at 60-65mm from the blade 

base were again sampled. 

The same genotypes were sown at the same 

time in 2 × 4 meters experimental plots in the field 

condition in order to obtain typical spring leaves. 

A randomly arranged series of five plots, each for 

one genotype, were considered as main plots and 

two main plots were grouped as a complete 

replication. In each replication, irrigation of one 

main plot withheld before booting stage so that 

when flag leavesemerged the soil water content 

was at about 55 percent of soil water holding 
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capacity. The other was irrigated normally every 

seven days. When plants reached at late stem 

elongation stage penultimate leaves were sampled 

and used for preparing microscopic slides.  

Samples from both leaf types were 

immediately transferred into 10% formalin 

solution for 48 hours. To prevent leaf curling 

samples were fixed on small pieces of cardboards 

by nips.Samples were then processed as follows to 

be prepared for taking transversesections. 

Firsttheytransferred to a 1:1 mixture of 96% 

ethanol and 10%formalin for 60minutes. Then 

they were immersed step by step in 50%, 70%, 

80%, 90% and 96% ethanol solutions each for 60 

minutes. The samples were then immersed two 

times in 100% ethanol and two times in 100% 

xylol. Finally samples were submerged in melted 

paraffin inside the blocking cassettes. Paraffin 

blocks were then fixed in the microtome clump 

and were transversely sectioned while the blade 

was adjusted at 5µm. Sections were then 

transferred on microscopic slides and incubated 

into an electric oven adjusted at 70°C for 20 

minutes. Sections were then stained using 

hematoxylin and eosin. 

Anatomical examinations were performed on 

five images randomly taken from slides using an 

eye-piece digital camera fixed on a light 

microscope at 10×40 magnification. Scion-

imageanalysis software (Scion- Image 

Corporation) was used to measure the area of 

epidermal, bundle sheath and mesophyll cells and 

the diameter of phloem sieve tubes and xylem 

vessels. In each case mean values of 10 random 

observations were used for data analysis.  

All data were subjected to analysis of variance 

using the corresponding linear additive model 

(Steel and Torrie 1980). Mean values were 

compared using Duncan's multiple range test at 

5% level of significance.  

 

Results 

Winter leaves 

Xylem vessel diameter:The effect of genotype 

and water stress on xylem vessel diameter was 

significant (Table 1). The interaction of the two 

factors was significant too.Under water stress 

condition xylem vessels diameter was increased in 

Azadi and Azar2 while decreased in Shole (Figure 

3). 

Phloem sievetubes diameter: Phloem sieve 

tubesdiameter was not affected by water stress. 

Meanwhile, the interaction of the two factors and 

the effect of genotype were significant on phloem 

sieve tubes diameter (Table1). Water stress 

decreased phloem sieve tubes diameter in Shole 

and Azadi while increased in Shahpasand, Azar2 

and Omid (Figure 2). 

Bundle sheath cells area: The effects of 

genotype and water stress were not significant on 

bundle sheath cells area. However, interaction of 

genotype by water stress was significant (Table 

1). Highest and lowest bundle sheath cell areas 

were found in Sholeand Omid under normal 

condition, respectively. Compared to the control 

condition bundle sheath cells area was decreased 

in Shole under water stress condition while it was 

increased in Omid, Shahpasand, Azadi and Azar2 

under the same condition (Figure1). 
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Table 1.Analysis of variance of the data regarding different anatomical characteristics of winter and spring 
leaves of wheat cultivars grown under normal and water stress conditions

   Diameter 
 Leaf 

type 
df Xylem 

vessels 
(×10-2) 

Phloem sieve 
tubes

(×10-3

Genotype Winter 4 2.77** 3.29* 

 Spring  3.9** 3.04* 

Water 
stress 

 1 2.99* 0.20n.s

   8.9* 7.2n.s 

Interaction  4 2.28** 4.49**

   5.07** 0.69n.s

Error  18 0.409 0.85 
   0.517 0.88 
*,**Significant at 5% and 1% probability level, respectively
 
 
. 

Figure 1. Meansof bundle sheath cells area of winter leaves
(black) and water stress (gray) conditions. Columns with the same alphabet letters are not 

significantly different at 5% level.
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Figure 2. Means of phloem sieve diameter for winter leaves (left) and 
cultivarsgrown under normal (black) and water stress (gray) conditions. In each case,columns with

the same letters are not significantly different at 5% level.
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nalysis of variance of the data regarding different anatomical characteristics of winter and spring 
leaves of wheat cultivars grown under normal and water stress conditions 

Area 
Phloem sieve 

tubes 
3) 

Bundle 
Sheath cells 

(×10-5) 

Mesophyll 
cells 

(×10-3) 
 

Upper 
epidermal cells 

(×10-4) 

 0.35n.s 0.91** 5.8** 
 1.7n.s 2.5** 2.21** 

n.s 0.12n.s 0.43n.s 0.87n.s 

 5.7n.s 0.28n.s 12.88* 

** 0.98** 1.02** 3.79** 
n.s 2.8n.s 4.2** 9.36** 

 0.16 0.105 0. 26 
 1.42 0.47 0.19 

at 5% and 1% probability level, respectively. nsNot significant 

 
 

of bundle sheath cells area of winter leavesin different wheat cultivars grown under normal 
(black) and water stress (gray) conditions. Columns with the same alphabet letters are not 

significantly different at 5% level. 
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Figure 2. Means of phloem sieve diameter for winter leaves (left) and spring (right) leaves of wheat
ultivarsgrown under normal (black) and water stress (gray) conditions. In each case,columns with

the same letters are not significantly different at 5% level. 
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nalysis of variance of the data regarding different anatomical characteristics of winter and spring 

Lower 
epidermal 

cells 
(×10-5) 
76.1** 

53.2** 

2.85n.s 

10.5** 

33.02* 

11.5** 

7.9 
1.86 

different wheat cultivars grown under normal 
(black) and water stress (gray) conditions. Columns with the same alphabet letters are not  

 
spring (right) leaves of wheat 

ultivarsgrown under normal (black) and water stress (gray) conditions. In each case,columns with 

c

a

Azar Azadi
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Figure 3. Mean values of xylem vessel diameter 
cultivars grown under normal (black) and water stress (gray) conditions. In each case, 

with the same letters are not significantly different at 5% level.

Mesophyll cells area:Mesophyll cells area was 

significantly affected by genotype and genotype 

by water stress interaction (Table1). Under water 

stress condition mesophyll cells area was 

decreased in Shole while increased in Azar2. 

Highest and lowest mesophyll cells area was 

found in Shole under control and Omid under 

water stress condition, respectively (Figure 4)

Upper epidermal cells area:Upper epidermal 

cells area was also significantly affected by 

genotype and genotype by stress interaction

(Table1). Epidermal cells area was decreased in 

Shole, Omid and Azar2 under water stress 

condition while it was increased in Azadi and 

Shahpasand. Highest and lowest epidermal cell 

areas were found in Shole under control condition 

and Azar2 under stress condition (Fig5). 

Lower epidermal cells area:Genotype 

genotype by water tress interaction effects on the 

lower epidermal cells area were significa

(Table1). In Shahpasand and Azadi lower 

epidermal cells area increased under water stress 

condition while in the others the changes were not 

significant (Figure 6). 
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Mean values of xylem vessel diameter for winter leaves (left) and spring (right) leaves of wheat 

cultivars grown under normal (black) and water stress (gray) conditions. In each case, columns 
with the same letters are not significantly different at 5% level. 
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Spring leaves 

Bundle sheath cells area:Data analysis showed 

that water stress and genotype effects and their 

interaction were not significant on the bundle 

sheath cells area (Table 1). 

Phloem sieve tubes diameter: Genotype

was significant on phloemsieve tu

(Table 1). Generally, phloem sieve tubes

was significantly higher in Azadi compare

Omid and Azar2 while the differences between 

Azadi, Shole and Shahpasnd were not 

(Figure2). 

Xylem vessel diameter:Xylem vessel diameter 

was significantly affected by genotype and 

stress and their interaction (Table 1)

vessel diameter in Shole and Shshpasand was 

significantly decreased under water stress 

condition. Meanwhile, there were no changes in 

the xylem diameter in Omid and Azar2 under 

water stress compared to the normal 

(Figure 3). 

Mesophyll cells area:Genotype

interaction with water stress effects on the 

mesophyll area were significant (Table 1)

cultivarShole mesophyll cells 

significantly increased under water s

condition while it was decreased in Azadi. 
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winter leaves (left) and spring (right) leaves of wheat 

olumns  

Data analysis showed 

that water stress and genotype effects and their 

interaction were not significant on the bundle 

Genotype effect 

ubesdiameter 

tubesdiameter 

was significantly higher in Azadi compared to 

Omid and Azar2 while the differences between 

Azadi, Shole and Shahpasnd were not significant 

Xylem vessel diameter 

was significantly affected by genotype and water 

(Table 1). Xylem 

hole and Shshpasand was 

significantly decreased under water stress 

no changes in 

ylem diameter in Omid and Azar2 under 

to the normal condition 

Genotype and its 

interaction with water stress effects on the 

(Table 1). In 

Shole mesophyll cells area was 

significantly increased under water stress 

condition while it was decreased in Azadi. 

aa a

Azar Azadi
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Changes in the mesophyll cells area ofgenotype

Omid, Shahpasnd and Azar2 under water stress 

condition were not significant (Figure 4). 

Upper epidermal cells area:Water stress, 

genotype and their interaction effects on the upper 

epidermal cells area were significant (Table 1).

Results are showing that compared to the normal 

condition upper epidermal cells area was 

increased in cultivarsShole, Shahpasnd, Azar2 and 

 

Figure 4. Mean values of mesophyll cells area of winter leaves (left) a
grown under normal (black) and water stress (gray) conditions. In each case, columns with the 

not significantly different at 5% level.

Figure 5. Mean values of upper epidermal cells area of winter leaves (left) and spring (right) leaves of wheat
cultivars grown under normal (black) and water stress (gray) conditions. In each case, 

letters are not significantly different at 5% 
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genotypes 

Omid, Shahpasnd and Azar2 under water stress 

Water stress, 

genotype and their interaction effects on the upper 

(Table 1). 

compared to the normal 

upper epidermal cells area was 

Shole, Shahpasnd, Azar2 and 

Azadi under water stress condition while 

decreased in cultivarOmid (Figure 5). 

Lower epidermal cells area:The same results 

were obtained in the case of lower epidermal cells

area so that it was significantly increased in Shole 

and Shahpsand under water stress condition and 

decreased in Omid. Meanwhile there 

changes in the epidermal cells area of Azar2 

(Figure6). 
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Azadi under water stress condition while it was 

 

The same results 
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Figure 6. Mean values of lower epidermal cells area of winter leaves (left) and spring (right) leaves of wheat
cultivars grown under normal (black) and water stress (gray) conditions. In each case, columns with the

same alphabet letters are 
 
 
Discussion 

This study showed that the xylem vessel diameter 

in wheat leaves is under the effect of genotype, 

water stress and their interaction indicating that 

small size vessels, if desired, could be selected 

for, depending on the water availability. 

Decreasing xylem diameter may play a role in 

adaptation of plants to water stress condition since 

smaller diameter decreases the hydraulic 

conductivity of the xylem (Martre et al. 2001

was shown that in the water stress susceptible 

winter wheat cultivars xylem diameter is greater 

compared to the tolerant ones (Ridly and 

Todd1966). In this experiment xylem vessel 

diameter was increased under water stress 

condition in the winter leaves except in 

cultivar Shole. However, xylem vessel diameter in 

Shole and Shahpasand reduced significantly under 

water stress condition. Meanwhile, reductions in 

other cultivars were not considerable. Therefore

lower xylem conductivity in the spring leaves 

expected to cause less water movement under 

higher evaporating demands of their growing 

period.  

The theoretical xylem hydraulic conductivity 

computed from the diameter of individual vessels 
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Figure 6. Mean values of lower epidermal cells area of winter leaves (left) and spring (right) leaves of wheat
cultivars grown under normal (black) and water stress (gray) conditions. In each case, columns with the

same alphabet letters are not significantly different at 5% level. 

This study showed that the xylem vessel diameter 

in wheat leaves is under the effect of genotype, 

water stress and their interaction indicating that 

desired, could be selected 

on the water availability. 

Decreasing xylem diameter may play a role in 

adaptation of plants to water stress condition since 

smaller diameter decreases the hydraulic 

2001) It 

water stress susceptible 

winter wheat cultivars xylem diameter is greater 

to the tolerant ones (Ridly and 

xylem vessel 

diameter was increased under water stress 

xcept in the 

ylem vessel diameter in 

Shole and Shahpasand reduced significantly under 

reductions in 

. Therefore, 

spring leaves is 

under 

higher evaporating demands of their growing 

hydraulic conductivity 

computed from the diameter of individual vessels 

using the Hagen–Poiseuille equation 

beenshown to be proportional to the 

observedvalues (Altus et al. 1985). 

shown in spring wheat leaves that the largest 

lateral vessels decrease in diameter with distance 

along the leaf towards the tip, resulting in the 

decreased hydraulic conduction (Altus 

which in turn may decrease the rate of water 

movement. This may help plants to use the 

available water slowly and as a result for a longer 

period of time.  

On the other hand increasing the xylem 

diameter in some plant parts may also be 

beneficial under water stress condition as may 
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Figure 6. Mean values of lower epidermal cells area of winter leaves (left) and spring (right) leaves of wheat 
cultivars grown under normal (black) and water stress (gray) conditions. In each case, columns with the 
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Hay 2002). Results of this experiment showed that 

the phloem sieve tubes diameter is affected in 

both winter and spring leaves while there was no 

effect by water stress. The existence of genetic 

variation in this case is shows that changing the 

capacity of the phloem sieve tubes can be targeted 

in breeding cultivars for higher assimilate 

translocation to the grains. Values of phloem 

cross-sectional area of different vein types along 

the wheat leaf blade supported the idea that lateral 

veins are responsible for translocation of 

assimilates while intermediate veins are working 

as collecting reservoirs (Altus and Canny 1982). 

Meanwhile, assimilated carbon is shown to be 

entered the intermediate and then the laterals 

veins (Altus and Canny 1985). It has been shown 

that phloem sieve tubes area depends on the sink 

with which they are related (Fitter and Hay 2002). 

However, the diameter of the phloem sieve tubes 

of the cultivars used in this study were not 

changed in accordance with their corresponding 

grain size as was reported by Ministry of Jihad-e-

Agriculture and also our data (not reported here). 

This is in contrast with what is expected from the 

phloem sievetubes diameters implying that there 

may be other limiting factors affecting grain size 

in these cultivars. 

Bundle sheath cells area of both leaf types 

were, on the other hand, not affected by genotype 

and water stress condition. The interaction effect 

of the two factors was however significant only in 

the case of winter leaves. Since bundle sheath 

cells are not photosynthetically active, increasing 

their size in cost of reducing mesophyll cell 

numbers may decrease the photosynthetic 

capacity of the leaf(McClendon 1992). It has been 

shown that increasing the number of the bundle 

sheath cells extensions reduces leaf 

photosynthetic capacity per unit area (McClendon 

1992). Bundle sheath cells extensions can prevent 

effective lateral diffusion among surrounding 

mesophyll cells (Terashima 1992) On the other 

hand they can work as a light penetration system 

helping the light to penetrate into the deep cell 

layers (Nikopoulos et al. 2002) and increase 

photosynthetic capacity. There is however no 

report on the effect of the size of the bundle 

sheath cells on the rate of photoassimilatesand 

solutesmovement through plasmodesmata 

connecting xylem and phloem to them.The area of 

the bundle sheath cells was significantly reduced 

by water stress in the winter leaves of cultivar 

Sholeh while in the other cultivars there were no 

significant differences between water stress and 

control plants in terms of bundle sheath cells area. 

It has been reported that reduction in the size 

is the major response of the cells to water stress 

condition. It was shown that mesophyll cells size 

decreased in olive plants leaves under water stress 

condition while the number of mesophyll cells 

and as a result the number of chloroplasts and 

CO2 fixation increased (Culter et al.1977).Water 

stress decreased the size of the mesophyll cells 

and their intercellular spaces (Bongi et al. 1987; 

Mediavilla et al. 2001). 
Our results showed that mesophyll cells area 

in both leaf types was affected by water stress 

condition (Figure 4)suggesting that selection for 

small mesophyll cells size is possible. This may 

help plants to have higher photosynthesis rates. 

There is no report on the effect of water stress 

on wheat leaf mesophyll cells size. Environmental 
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stresses, however,were shown to change 

mesophyll cells dimensions in other crop plants. 

For example high temperature stress increased the 

thickness of palisade and spongy cell layers and 

lower epidermal cells in soybean leaves. 

Decreased levels of photosynthesis are shown to 

be mediated through anatomical changes in 

soybean leaves under high temperature stress 

(Djanaguiramana et al. 2011). It has been found in 

wild and transgenic tobacco plants that 

irrespective of genotype or environment, CO2 

transfer conductance varied in proportion to the 

surface area of chloroplasts exposed to 

intercellular airspaces (Evans et al. 1994).In 

avocado changes in mesophyll cell structure was 

shown to be the cause of low photosynthetic rate 

(Chaves 1991; Chartzoulakis et al. 2002).Our 

results showed that mesophyll cell size was not 

reduced by water stress condition. 

Changes in the size and shape of the 

epidermal cells in both winter and spring leaftypes 

can facilitate the penetration of light into the 

mesophyll cells (Karabourniotic et al.1994). 

Under water stress condition changes of the area 

of the epidermal cells in both leaf types were the 

same in Omid and Shahppasand while in the case 

of Azar2 and Azadi water stress effect was only 

significant on the epidermal cells of the upper 

surface of the spring leaves. Reductions of the 

epidermal cell size in the winter and spring leaves 

in cultivar Omid and also in the winter leaves of 

Sholeh are in accordance with the findings of 

Artemiosand Bosabalidis (2002) in olive and 

Jones et al. (1980) in ryegrass. 

 

General conclusion  

Results obtained from this experiment showed 

that anatomical changes of the winter and spring 

leaves are not the same under water stress 

condition. Different responses of the two types of 

leaves are not unexpected since they grow under 

different environmental conditions. However, in 

some cases such as xylem vessels diameter 

responses are considerably different. For example, 

in cultivars Azar2 and Azadi winter leaves had 

larger xylem vessel diameter under water stress 

compared to the normal condition while in spring 

leaves they had smaller vessels under water stress 

condition. 
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