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Abstract 
Peppermint (Mentha piperita L.), a herbaceous and perennial species whichis produced mainly for the medicine and 
food. The peppermint plants were initiated from 10 cm-long rhizome cuttings followed by transferring into pots. The 48 
h-treated plants with methyl jasmonate (MJ) concentrations (0, 0.1, 0.5 mM) were assessed for their total soluble 
proteins, malondialdehyde (MDA), chlorophylls a, b and total, anthocyanin, total carbohydrates, carotenoid, activity of 
antioxidant guaiacol peroxidase (POD) and superoxide dismutase (SOD) enzymes. The data were analyzed using 
completely randomized design (CRD) with three replications. Mean comparisons were carried out, using Duncan's 
multiple range test. MJ treatment caused significant changes in soluble proteins, chlorophylls (a, b and total), MDA, 
carbohydrates and antioxidant enzymes (SOD and POD) but had no effect on antocyanin and carotenoid. These results 
indicate that MJ can effectively improve the defense system and antioxidant capacity of peppermint. 
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Introduction 

Peppermint (Mentha piperita L.) belongs to mint 

(Lamiaceae) family and is considered as a 

medicinal and aromatic plant species. Peppermint 

essential oil includes menthol, menthone, 

methylacetat, menthofuran and pulegone 

(Mahmoud and Croteau 2003; Tabatabaie and 

Nazar 2007). Its cultivation has economic 

importance, due to its ability to produce and store 

essential oil, whose main constituent is menthol, 

used in oral hygiene products, pharmaceuticals, 

cosmetics and foods. Menthol also has high 

antifungal and antibacterial potentials, thus 

becoming one of the most demanded substances 

by the scents and essences industry (Scavroni 

2005). Because of this and other reasons, 

peppermint essential oil ranks high in terms of 

total sales volume (Orozco-Ca´rdenas et al. 2001). 

This herb synthesize and concentrate oils in its 

leaves in highly specialized epidermal secretory 

structures known as glandular trichomes 

(McCaskill et al. 1992). Jasmonates (JAs) 

including jasmonic acid (JA) and MJ are a family 

of cyclopentanone compounds synthesized from 

linolenic acid via the octadecanoic pathway. They 

inhibit plant growth generally but also promote 

diverse processes as a class of plant growth 

regulator consisting of fruit ripening, senescence, 
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tuber formation, tendril coiling, pollen formation 

and defense-related responses against mechanical 

and insect wounding and pathogen infection 

(Ueda and Kato 1980; Creelman and Mullet 

1997). The jasmonates applied exogenously to 

plants exert various effects either inhibiting or 

promoting the morphological and physiological 

changes. It has been shown that MJ causes the 

generation of H2O2 (Orozco-Ca´rdenas and Ryan 

1999; Orozco-Ca´rdenas et al. 2001; Hung and 

Kao 2004) and lipid peroxidation expressed as 

MDA production in plant cells (Hung and Kao 

1998, 2004). Thus, MJ leads to oxidative stress in 

plant cells. Plants have an internal protective 

enzyme catalyzed clean up system to scavenge 

reactive oxygen species (ROS), thus ensuring 

normal cellular function. Superoxide dismutase 

(SOD) constitutes the first line of defense via 

detoxification of super oxide radicals (Sairam and 

Saxena 2000), thereby maintaining membranes of 

plant tissue. SOD detoxifies superoxide anion free 

radicals by forming H2O2; It can be further 

eliminated by concerted action of catalase (CAT) 

and POD. In addition, MJ helps in maintaining the 

pools of antioxidant enzymes and alleviating the 

oxidative stress (Li et al. 1998; Jung 2004). Both 

SOD and POD are important enzymes associated 

with anti-oxidative stress in plants. ROS 

scavenging group depends on the detoxification 

mechanism provided by an integrated system of 

non-enzymatic reduced molecules and enzymatic 

antioxidants (Jaleel et al. 2006). Exogenously 

applied JA and MJ lead to decreased expression of 

photosynthesis-related genes encoding for 

example the small subunit of ribulose-1,5-

bisphosphate carboxylase/oxygenase (Rubisco), 

reduced translation and increased degradation of 

Rubisco and rapid loss of chlorophyll (Chl) in 

barley leaves (Weidhase et al. 1987; Parthier 

1990). The MJ does not only regulate a variety of 

plant-developmental responses, but is also 

induced by pathogen attack or wounding, which 

often leads to the generation of ROS, including 

H2O2, superoxide anions (O2-) and hydroxyl free 

radicals (OH) (Faurie et al. 2009; Parra-Lobato et 

al. 2009). ROS have the potential to interact with 

many cellular components, triggering stresses in 

plant cell culture, leading to membrane damage 

and, as a result, there is an immediate cellular 

response to trigger plant defense signals. Plants 

possess antioxidant defense systems, consisting of 

enzymatic and non-enzymatic components, which 

normally maintain ROS balance within the cell. 

Plants contain substantial amounts of carotenoids 

that serve as non-enzymatic scavengers of ROS 

(Young and Britton 1990). Anti-oxidative 

enzymes include SOD, which catalyzes the 

disproportion of superoxide radicals to hydrogen 

peroxide and POD, which removes H2O2 (Kumari 

et al. 2006). The POD is associated with 

biochemical and physiological processes such as 

growth, cell formation, fruit development, 

ethylene biosynthesis, as well as the response to 

various stresses (Matamoros et al. 2003). 

The purpose of this study was to determine 

the changes in the physiological characteristics 

and in the activities of antioxidant enzymes 

capacity in Mentha piperita treated with different 

concentrations of MJ. It was hypothesized that MJ 

could improve non- and antioxidant enzymatic- 

defense in peppermint. 
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Materials and Methods 

This experiment was carried out in the greenhouse 

of Tarbiat Modares University, Tehran, Iran. The 

peppermint plants were supplied from Iranian 

Institute of Medicinal Plants, Karaj, Iran. They 

initiated from 10 cm-long rhizome cuttings 

followed by transferring into pots. The 48 h-

treated plants with MJ on three different 

centrations (0, 0.1, 0.5 mM) were assessed for 

their total soluble proteins, chlorophylls (a, b, and 

total), MDA, total carbohydrates, carotenoid, 

anthocyanin and antioxidant enzymes (SOD and 

POD). 

 

Determination of protein, lipid peroxides, 

carbohydrates and chlorophyll content in leaf 

extract 

Soluble protein extraction was carried out 

according to Ausubel et al. (1995) and determined 

with Folin-Ciocalteu reagent according to Lowry 

et al. (1951) and Bradford (1976). The level of 

lipid peroxidation was measured in terms of MDA 

content, a product of lipid peroxidation, following 

the method of De Vos (1991). MDA is a major 

cytotoxic product of lipid peroxidation and acts as 

an indicator of free radical production. Total 

carbohydrates were estimated spectrophoto-

metrically according to the method of Dubois et 

al. (1956). Chlorophyll was extracted in 80% 

(v/v) acetone from the leaf samples according to 

the method of Arnon (1949). 

 

Measurement of carotenoid, anthocyanin 

content, POD and SOD activity 

Carotenoid and anthocyanin were estimated 

spectrophotometrically according to the methods 

of Helrich (1990) and Krizek et al. (1993), 

respectively. POD activity was determined as an 

increase in optical density due to the formation of 

guaiacol dehydrogenation product according to 

Kar and Mishra (1976). SOD activity was assayed 

by using the photochemical NBT following the 

method of Giannopolitis and Ries (1977).  

 

Statistical analysis 

The data were analyzed using completely 

randomized design with three replications by 

Minitab 16. Means and standard errors (SE) were 

used to compare MJ treatments, using Duncan's 

multiple range test. Moreover, correlation 

coefficients were calculated among all 

physiological characteristics. 

 

Results 

The result of ANOVA showed that MJ had 

significant effect on most measured physiological 

characteristics in the leaves of peppermint (Table 

1). Antioxidant reactions in MJ-treated Mentha 

piperita caused a significant decrement in 

photosynthetic activities and pigment levels. The 

contents of Chls a, b and total decreased 

significantly in 0.1 mM MJ-treated leaves 

(Figures 1A, B, C, respectively) compared with 

the control, but no significant changes in those 

characters were detectable in 0.5 mM MJ-treated 

leaves. The ratio of Chls a + b/CAR also 

decreased remarkably in the MJ treated leaves 

(Figure 1D), indicating that the changes of total 

Chls a + b takes place faster than that of total 

carotenoids (CARs). In the present study, the 

MDA concentration increased significantly when 

plants were subjected to 0.1 mM MJ treatment 
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compared with the control. CAR content was not 

changed by inducing MJ treatment, while protein 

content decreased in 0.5 mM MJ-treated leaves 

(Figure 1F). Total carbohydrates (CHO; glucose) 

content in 0.5 mM MJ-induced leaves was 

detected to be lower than in those of controls 

(Figure 1G). Our data showed that treatment of 

Mentha piperita plants with 0.5 mM MJ leads to a 

significant increase in POD activity. Total POD 

and SOD activities showed prominently about 

2.36- and 1.81-fold increase, respectively at 48 h 

of MJ induction (Figures 1H, I). Antioxidant 

enzymes exhibited the highest activities at 0.5 

mM MJ exposure compared to those in the control 

plants. 

 

Table 1. Effect of MJ on physiological characters in Mentha piperita 
MS 

df SOV Chl a 

+b/CAR 

Total 

CHO 
SOD POD MDA CAR 

Total 

Chl 
Chl b Chl a Antocyanin Protein 

2.728** 102.94** 2.995** 2.995** 0.156** 0.0169ns 2.275* 3.564** 2.728** 0.00008ns 4.53*** 2 MJ 

0.258     9.43 0.169 0.169 0.013 0.0053 0.409 0.182 0.258 0.00004 0.18 6 Error 
ns, *, ** and *** Non significant and significants at 5%, 1% and 0.1% probability levels, respectively 

 
 

Correlation coefficients among physiological 

characters (Table 2) showed positive and highly 

significant relationship between POD and SOD (r 

= 0.985***) and negative and highly significant 

correlations between soluble protein and either 

SOD (r= −0.911**) or POD (r= −0.918***). 

Similarly, total CHO negatively and significantly 

correlated with either Chl a (r= −0.781*), Chl b 

(r= −0.745*) or total Chl (r= −0.704*). There were 

positive and significant correlations between total 

CHO and either protein (r= 0.727*) or MDA (r= 

0.847**).  

 
Table 2. Correlation coefficients among physiological characters in Mentha piperita 

 Protein Antocyanin Chl a Chl b Total Chl CAR MDA POD 
Antocyanin −0.189ns        
Chl a −0.511ns −0.336ns       
Chl b −0.398ns −0.398ns   0.964***      
Total Chl −0.391ns −0.413ns   0.979***   0.985***     
CAR −0.792* 0.124ns   0.521ns   0.456ns   0.461ns    
MDA 0.713* 0.150ns −0.786 −0.777* −0.778* −0.666*   
POD  −0.918*** 0.280ns   0.445ns   0.318ns   0.295ns   0.583ns   0.576ns  
SOD −0.911** 0.256ns   0.461ns   0.353ns   0.336ns   0.585ns −0.664ns  
Total CHO 0.727* 0.174ns −0.781* −0.745* −0.704* −0.638ns   0.847**  
Chl a+b/CAR 0.074ns −0.494ns   0.867**   0.904**   0.918***   0.075ns −0.568ns −0.497ns 

                    ns, *, ** and *** Non significant and significants at 5%, 1% and 0.1% probability levels, respectively 
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Discussion 

Hormones inclusive jasmonates may mediate the 

response of plants to environmental stresses and 

may interact with other cellular metabolites and 

environmental factors in the regulation of stress 

responses (Parthier 1990). In previous reports, it 

was found that MJ stimulates the production of 

H2O2 (Orozco-Ca´rdenas and Ryan 1999, Orozco-

Ca´rdenas et al. 2001; Hung and Kao 2004), 

leading to oxidative stress in plant cells. Reduced 

oxygen species such as hydrogen peroxide (H2O2) 

and superoxide radicals (O2−) are formed due to 

oxidative stress and they can produce free 

radicals, inducing lipid peroxidation and protein 

denaturation. The MDA is an oxidized product of 

membrane lipids and its level can show the extent 

of oxidative stress. When plants were treated with 

0.1 mM MJ, the MDA concentration significantly 

increased compared to the control. Smaller 

amount of MDA by 0.5 mM MJ application in our 

study (Figure 1E) indicated that it had better 

efficiency to endure the damage of cellular 

membranes than 0.1 mM MJ concentration. 

MDA, produced by lipid peroxidation of cell 

membrane, is often used as an indicator of salt and 

oxidative damages (Mandhania 2006). 

Decrease in MDA level by 0.5 mM MJ 

application may be the result of increased 

activities of antioxidant enzymes that can help to 

clean up ROS and alter ratio of membranes fatty 

acids as a major source of ROS production (Wang 

1999). However, lipid peroxidation operated 

under exogenous application of MJ in peanut 

(Kumari et al. 2006). Previous studies showed 

soluble protein content as a main index of 

physiological condition of plants. We can express 

the disturbance in protein metabolism as a reason 

for decreasing the total soluble protein amount of 

the treated plants (Figure 1F). Many results 

suggested a connection between photosynthesis 

and jasmonates in plants. The contents of Chls a, 

b and total decreased significantly in 0.1 mM MJ-

treated leaves (Figures 1A, B, C, respectively) 

compared with the control. It was reported that 

Chl a is more intensely degraded than Chl b (Wolf 

1956). Exogenously applied MJ reduced 

translation and increased degradation of Rubisco 

and resulted in rapid loss of Chl in barley leaves 

(Weidhase et al. 1987; Parthier 1990). Results of 

the present study indicated that significant 

increase in total CHO is somehow associated with 

reduction in Chl. Sugar, mainly glucose, 

accumulation in the cell is responsible for the 

regulation of photosynthetic process (Moore et al. 

1999). The highly significant correltions among 

CHO, protein and MDA (Table 2) suggested that 

physiological traits have a close relationship with 

each other. The important components of 

thylakoid membrances are CARs which can 

effectively suppress the exited Chl a, Chl b and 

total Chl (Knox and Dodge 1985). 

Further increment in antioxidant enzyme 

activities is caused by exogenous application of 

MJ (Anjum et al. 2011)., The modification of 

antioxidant enzymes (SOD, POD) can play 

important protective roles in avoiding the 

deleterious effects triggered by elevated levels of 

ROS observed at initial moments of MJ exposure. 

To minimize the damaging results of ROS, plants 

use a lot of evolved non- and enzymatic-

antioxidant systems. Plants contain substantial 

amounts of CAR that serve as  non-enzymatic  
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Figure 1. Effects of methyl jasmonate (MJ) on A) Chl a (mg g-1 F.W), B), Chl b (mg g-1 F.W.), C), Total Chl (mg g-1 
F.W.), D), Chl a+b/CAR, E), MDA (mM cm-1), F), protein (mg g-1 F.W), G), total CHO (mg g-1FW), H), POD (Δ A 470 
mg-1 protein) and I) SOD (mg mg-1 protein) in Mentha piperita. 

M0 = Control  M1 = 0.1 mM  M2 = 0.5 
 

  

scavengers of ROS (Young and Britton 1990). 

The metabolism of ROS is dependent on several 

functionally interrelated  antioxidant enzymes 

such as SOD and POD. Enzymatic antioxidant 

systems provide protection against the toxic 

effects of ROS (Scandalios 1993). PODs are 

involved in a large number of biochemical and 

physiological processes (Yip 1964) and may 

change quantitatively and qualitatively during 

growth and development (Shannon 1969). The 

SOD is believed to play a crucial role in 

antioxidant defense because it catalyzes the 

dismutation of O2– into H2O2, whereas CAT and 

POD destroy H2O2 (Scandalios 1993). A positive 
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and high correlation between POD and SOD 

(Table 2) suggests that an increase of SOD 

activity was accompanied by an increase of POD 

activity as a result of high demand of quenching 

H2O2. Such findings in Mentha piperita are 

consensus with Triticum aestivum results reported 

by Ghobadi et al. (2011). In Arabidopsis, when 

JA was used at a concentration of 100 μM, no 

significant alteration in the enzymes activities was 

detected until the third day of induction, but the 

activity was reduced remarkably after 6 d of 

treatment (Berger 2002). In barley, MJ mediated 

the stimulation of antioxidant enzymes including 

SOD, CAT and POD (Popova et al. 2003). JA 

ability to cause chlorosis led to the suggestion that 

this compound plays a role in plant senescence 

(Ueda et al. 1981), however, it was reputed by the 

fact that high JA levels were found in the zones of 

cell division, young leaves, and reproductive 

structures (Creelman and Mullet 1997). 

Application of MJ caused a senescence-like 

symptom as indicated by a great decline in 

photosynthesis and Chls and a strong increase in 

anthocyanins and antioxidant enzyme activities in 

Arabidopsis thaliana (Jung 2004). The most 

obvious character of leaf senescence is yellowing. 

Chl loss has been the principal criterion of 

senescence in the most reports. The protein 

degradation during leaf senescence has been 

realized in the earliest studies. In the present 

study, the senescence of Mentha piperita leaves 

was followed by measuring the decrease of Chl 

and protein contents. It is clear that MJ 

significantly promotes the senescence of 

peppermint leaves. These results are in agreement 

with those in the previous reports (Chao and Kao 

1992; Tsai et al. 1996; Chen and Kao 1998). 

Several reports showed that the soluble sugar 

content often goes up, not down, in senescing 

leaves (Shiroya et al. 1961; Trippi 1965; Egli et 

al. 1980; Lazan et al. 1983; Crafts-Brandner et al. 

1984). It has even been proposed that elevated 

sugar content actually causes senescence (Lazan 

et al. 1983). Our results showed that glucose 

(soluble sugar) content decreased in 0.5 mM MJ-

treated peppermint leaves (Figure 1G), refuting 

the suggestion that sugar accumulation may cause 

leaf senescence. Moreover, the effect of 

exogenous MJ treatment on antioxidant enzymes 

(POD, SOD) and non-enzymatic defenses was 

evaluated, verifying that MJ can increase the 

activity of antioxidant enzymes in Mentha 

piperita. 
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