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Abstract In this paper, we study sufficient conditions for existence and uniqueness of solutions
of three point boundary value problem for p-Laplacian fractional order differential
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show the applicability of our results.
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1. Introduction

The rapidly increasing applications of fractional order differential equations in var-
ious fields of sciences such as Engineering, Mathematics, Chemistry, etc [10, 11, 15–
17,21], attracted the interest of many modern scientists. One of the most important
area of research in the field of fractional order differential equations is the theory
on existence and uniqueness of solutions to nonlinear boundary value problems for
fractional order differential equations. This ares of research gained much interest in
the community of mathematicians and is rapidly growing area. We refer the read-
ers to the recent work [1–7, 12–14, 18–20, 22, 25] and the references therein for the
valuable results on the theory of existence of solutions to boundary value problems
corresponding to fractional order differential equations.

The theory on existence and uniqueness of solutions to boundary value problems
with p-Laplacian operator for ordinary differential equations are well studied. For ex-
ample, J. Zhang et.al [26] studied multiple periodic solutions of p-Laplacian equation
of the form{

(ϕp(u
′))′ = f(t, u, u′), t ∈ [0, T ],

u(0) = u(T ), u′(0) = u′(T ),
(1.1)
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with the tools of degree theory and the method of upper and lower solutions. X.
Xu and B. Xu [24] studied sign changing solutions of p-Laplacian equation with a
sub-linear nonlinearity at infinity{

(ϕp(u
′(t)))′ + f(t, u(t), u′(t)) = 0, t ∈ (0, 1),

u(0) = u(1) = 0,
(1.2)

by the use of upper and lower solutions method and Leray-Schauder degree theory.
In [23], B. Wang studied triple positive solutions for boundary value problems for
one-dimensional p-Laplacian on a half line of the form{

(ϕp(x
′(t)))′ + h(t)f(t, x(t), x′(t)) = 0, 0 < t < ∞,

u(0) = 0, limt→+∞ x(t) = 0.
(1.3)

The study of boundary value problems, particulary multi point boundary value prob-
lems for fractional differential equations with p-Laplacian operators has attracted
the attentions of mathematicians quite recently and only few paper can be found in
the literature dealing with p-Laplacian fractional order boundary value problems. Z.
Han et.al [9] studied positive solutions to boundary value problems of p-Laplacian
fractional differential equations of the form{

Dβ
0+(ϕp(D

αu(t))) + a(t)f(u(t)) = 0, 0 < t < 1

u(0) = γ(ξ) + λ, ϕp(D
α
0+u(0)) = (ϕp(D

α
0+u(1)))

′ = (ϕp(D
α
0+u(0)))

′′ = 0,

(1.4)

where 0 < α ≤ 1, 2 < β ≤ 3 are real numbers and Dα
0+ , D

β
0+ are standard Caputo

fractional fractional derivatives.
Motivated by the above work, we studied existence and uniqueness of solutions

to three point boundary value problems for p-Laplacian fractional order differential
equation of the form

Dα(ϕp(D
βu(t))) + a(t)f(u(t)) = 0, t ∈ [0, 1], 2 < α, β ≤ 3,

u(0) = 0, γu′(1) = u′(0), u′′(0) = 0

ϕp(D
βu(0)) = 0, ϕp(D

βu(ξ)) = (ϕp(D
βu(1)))′, (ϕp(D

βu(0)))′′ = 0,

(1.5)

where 0 < ξ, γ < 1, Dα, Dβ stand for Caputo’s fractional derivative and ϕp(s) =
|s|p−2s, p > 1, ϕ−1

p = ϕq,
1
p +

1
q = 1. We recall some basic definitions and results. For

α > 0, choose n = [α] + 1 if α in not an integer and n = α if α is an integer.

Definition 1.1. The fractional order integral of order α > 0 of a function f :
(0,∞) → R is given by

Iαf(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s) ds,

provided the integral converges.
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Definition 1.2. For a function f ∈ Cn[0, 1], the Caputo fractional derivative of order
α is define by

(Dα)f(t) =
1

Γ(n− α)

∫ t

0

(t− s)n−α−1f (n)(s)ds,

provided that the right side is pointwise defined on (0,∞).

Definition 1.3. A cone P in a real Banach space X is called solid if P o ̸= ∅, where
P o is the interior of P . A cone P of a real Banach space X, is normal if there exists
N > 0 such that x ≤ y implies that ∥x∥ ≤ N∥y∥ for each x, y ∈ P , and the minimal
N is called a normal constant of P .

Definition 1.4. Let P be a solid cone in a real Banach space X, T : P o → P o be an
operator and 0 < θ < 1. Then T is called θ-concave operator if T (ku) ≥ kθT (u) for
any 0 < k < 1 and u ∈ P o.

Lemma 1.5 ( [8]). Assume that P is a normal solid cone in a real Banach space X,
0 < θ < 1 and T : P o → P o is a θ−concave increasing operator. Then T has only
one fixed point in P o.

The following results are known [11].

Lemma 1.6. For α, β > 0, the following relation hold:

Dαtβ =
Γ(β + 1)

Γ(β + 1− α)
tβ−α−1, β > n and Dαtk = 0, k = 0, 1, 2, ..., n− 1.

Lemma 1.7. For g(t) ∈ C(0, 1), the homogenous fractional order differential equation
Dαg(t) = 0 has a solution

g(t) = c1 + c2t+ c3t
2 + ...+ cnt

n−1, ci ∈ R, i = 1, 2, 3, ..., n. (1.6)

Lemma 1.8. The following result holds for fractional differential equations

IαDαy(t) = y(t) + c0 + c1t+ c2t
2 + ...+ cn−1t

n−1,

for arbitrary ci ∈ R, i = 0, 1, 2, ..., n− 1.

2. main results

We need the following lemmas for the proof of our main results.

Lemma 2.1. For y ∈ C[0, 1], the boundary value problem for fractional differential
equation{

Dβu(t) = y(t) 2 < β ≤ 3,

u(0) = 0, γu′(1) = u′(0), u′′(0) = 0,
(2.1)

has a solution of the form

u(t) =

∫ 1

0

G(t, s)y(s)ds, (2.2)
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where

G(t, s) =

{
1

Γ(β) (t− s)β−1 + t
1−γ

γ
Γ(β−1) (1− s)β−2, 0 < s ≤ t < 1

t
1−γ

γ
Γ(β−1) (1− s)β−2, 0 < t ≤ s < 1.

(2.3)

Proof. Applying the operator Iβ on the differential equation in (2.1) and using lemma
(1.8), we obtain

u(t) = Iβy(t) + c1 + c2t+ c3t
2. (2.4)

The boundary conditions u(0) = 0 and u′′(0) = 0 imply that c1 = 0 = c3, and the
boundary condition γu′(1) = u′(0) yields c2 = γ

1−γ I
β−1y(1). Hence, (2.4) takes the

form

u(t) = Iβy(t) +
tγ

1− γ
Iβ−1y(1), (2.5)

which can be rewritten as

u(t) =
1

Γ(β)

∫ t

0

(t− s)β−1y(s)ds+
tγ

1− γ

1

Γ(β − 1)

∫ 1

0

(1− s)β−2y(s)ds

=

∫ 1

0

G(t, s)y(s)ds.

�

We note that G(t, s) ≥ 0 on [0, 1]×[0, 1]. Further, for t1, t2 ∈ [0, 1] with s ≤ t1 ≤ t2,
we have

G(t2, s)−G(t1, s) =
1

Γ(β)
((t2 − s)β−1 − (t1 − s)β−1)

+
γ(1− s)β−2

(1− γ)Γ(β − 1)
(t2 − t1)

≤
(
(β − 1)cβ−2

Γ(β)
+

γ

(1− γ)Γ(β − 1)

)
(t2 − t1),

(2.6)

c ∈ (t1, t2) and for t1, t2 ∈ [0, 1] with t1 ≤ t2 ≤ s, we have

G(t2, s)−G(t1, s) =
γ(1− sβ−2)

(1− γ)Γ(β − 1)
(t2 − t1) ≤

γ

(1− γ)Γ(β − 1)
)(t2 − t1).

(2.7)

From (2.6) and (2.7), it follows that

G(t2, s)−G(t1, s) → 0 as t1 → t2. (2.8)

Lemma 2.2. For y ∈ C[0, 1], the boundary value problem for fractional differential
equation

Dα(ϕp(D
βu(t))) + y(t) = 0, 2 < α, β ≤ 3,

u(0) = 0, γu′(1) = u′(0), u′′(0) = 0,

ϕp(D
βu(0)) = 0, ϕp(D

βu(ξ)) = (ϕp(D
βu(1)))′, (ϕp(D

βu(0)))′′ = 0.

(2.9)
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has a solution of the form

u(t) =

∫ 1

0

G(t, s)ϕq(

∫ 1

0

H(s, τ)y(τ)dτ)ds, (2.10)

where

H(t, s) =


− (t−s)α−1

Γ(α) + t
1−ξ (

(1−s)α−2

Γ(α−1) − 1
Γ(α) (ξ − s)α−1), s ≤ t, ξ ≥ s

t
1−ξ (

(1−s)α−2

Γ(α−1) − 1
Γ(α) (ξ − s)α−1), t ≤ s, ξ ≥ s

− (t−s)α−1

Γ(α) + t
1−ξ (

(1−s)α−2

Γ(α−1) , s ≤ t, s ≥ ξ
t

1−ξ (
(1−s)α−2

Γ(α−1) , t ≤ s, s ≥ ξ,

(2.11)

and G(t, s) is given by (2.3).

Proof. Applying integral Iα on the differential equation in (2.9) and using lemma
(1.8), we obtain

ϕp(D
βu(t)) = −Iαy(t) + c1 + c2t+ c3t

2. (2.12)

The boundary conditions ϕp(D
βu(0)) = 0, (ϕp(D

βu(0)))′′ = 0 lead to c1 = 0 = c3
and the boundary condition ϕp(D

βu(ξ)) = (ϕp(D
βu(1)))′ yields c2 = 1

1−ξ (I
α−1y(1)−

Iαy(ξ)). Consequently, (2.12) takes the form

ϕp(D
βu(t)) = −Iαy(t) +

t

1− ξ
(Iα−1y(1)− Iαy(ξ)), (2.13)

which can be written as

ϕp(D
βu(t)) =− 1

Γ(α)

∫ t

0

(t− s)α−1y(s)ds

+
t

1− ξ
(

1

Γ(α− 1)

∫ 1

0

(1− s)α−2y(s)ds

− 1

Γ(α)

∫ ξ

0

(ξ − s)α−1y(s)ds)

=

∫ 1

0

H(t, s)y(s)ds.

(2.14)

The boundary value problem (2.9) reduces to the following problem

Dβu(t) = ϕq(

∫ 1

0

H(t, s)y(s)ds)

u(0) = 0, γu′(1) = u′(0), u′′(0) = 0

(2.15)

which in view of lemma (2.1) yields the required result

u(t) =

∫ 1

0

G(t, s)ϕq(

∫ 1

0

H(s, τ)y(τ)dτ)ds.

�
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Lemma 2.3. The function H(t, s) defined by (2.11) is continuous on [0, 1]×[0, 1] and
satisfies the following relations

(A) H(t, s) ≥ 0, H(t, s) ≤ H(1, s), for t, s ∈ [0, 1]
(B) H(t, s) ≥ tα−1H(1, s) for t, s ∈ (0, 1)

Proof. Continuity ofH clearly follows from the definition ofH. For 0 < s ≤ t ≤ ξ < 1,
we have the following

H(t, s) = − (t− s)α−1

Γ(α)
+

t

1− ξ
(
(1− s)α−2

Γ(α− 1)
− 1

Γ(α)
(ξ − s)α−1)

= −tα−1 (1−
s
t )

α−1

Γ(α)
+

t

1− ξ
(
(1− s)α−2

Γ(α− 1)
− 1

Γα
(ξ − s)α−1)

≥ − tα−1

Γα
(1− s)α−1 +

tα−1

1− ξ
(
(1− s)α−2

Γ(α− 1)
− 1

Γ(α)
(ξ − s)α−1)

=
tα−1

(1− ξ)Γ(α)
(−(1− s)α−1(1− ξ) + (1− s)α−2(α− 1)− (ξ − s)α−1)

≥ tα−1

(1− ξ)Γ(α)
(−(1− s)α−1 + ξα−1(1− s)α−1 − (ξ − s)α−1+

(1− s)α−2(α− 1))

≥ tα−1

(1− ξ)Γ(α)
(−(1− s)α−1 + (ξ − s)α−1 − (ξ − s)α−1+

(1− s)α−2(α− 1)) ≥ 0.

The other cases can be deal similarly. Now,

∂H
∂t

(t, s) =


− (t−s)α−2

Γ(α−1) + 1
1−ξ (

(1−s)α−2

Γ(α−1) − 1
Γ(α) (ξ − s)α−1), s ≤ t, ξ ≥ s

1
1−ξ (

(1−s)α−2

Γ(α−1) − 1
Γ(α) (ξ − s)α−1), t ≤ s, ξ ≥ s

− (t−s)α−2

Γ(α−) + 1
1−ξ (

(1−s)α−2

Γ(α−1) , s ≤ t, s ≥ ξ
1

1−ξ (
(1−s)α−2

Γ(α−1) , t ≤ s, s ≥ ξ,

Clearly, ∂H
∂t (t, s) > 0 which implies that H(t, s) is an increasing function of t. Hence

H(t, s) ≤ H(1, s).
Part (B) follows from the following

H(t, s)

H(1, s)
=

− (t−s)α−1

Γ(α) + t
1−ξ (

(1−s)α−2

Γ(α−1) − 1
Γ(α) (ξ − s)α−1)

− (1−s)α−1

Γ(α) + 1
1−ξ (

(1−s)α−2

Γ(α−1) − 1
Γ(α) (ξ − s)α−1)

≥
−tα−1 (1−s)α−1

Γ(α) + tα−1

1−ξ (
(1−s)α−2

Γ(α−1) − 1
Γ(α) (ξ − s)α−1)

− (1−s)α−1

Γ(α) + 1
1−ξ (

(1−s)α−2

Γ(α−1) − 1
Γ(α) (ξ − s)α−1)

≥ tα−1
− (1−s)α−1

Γ(α) + 1
1−ξ (

(1−s)α−2

Γ(α−1) − 1
Γ(α) (ξ − s)α−1)

− (1−s)α−1

Γ(α) + 1
1−ξ (

(1−s)α−2

Γ(α−1) − 1
Γ(α) (ξ − s)α−1)

= tα−1.

�
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Assume that the following hold:

(W1) 0 <
∫ 1

0
H(1, τ)a(τ)dτ < +∞.

(W2) There exist 0 < δ < 1 and ρ > 0 such that

f(x) ≤ δLϕp(x), for 0 ≤ x ≤ ρ, (2.16)

where 0 < L ≤ (ϕp(ϖ1)δ
∫ 1

0
H(1, s)a(s)ds)−1, ϖ1 = 1

Γ(β+1) +
γ

(1−γ)Γ(β) .

(W3) There exist b > 0, such that

f(x) ≤ Mϕp(x), for x > b, 0 < M < (ϕp(ϖ12
q−1)

∫ 1

0

H(1, τ)a(τ)dτ)−1.

(2.17)

(W4) f(x) is non-decreasing in x.
(W5) There exist 0 ≤ θ < 1 such that

f(kx) ≥ (ϕp(k))
θf(x), for any 0 < k < 1 and 0 < x < +∞ (2.18)

2.1. Existence and Uniqueness of solutions:

Theorem 2.4. Under the assumptions (W1) and (W2), the boundary value problem
(1.5) has at least one positive solution.

Proof. Define K1 = {u ∈ C[0, 1] : 0 ≤ u(t) ≤ ρ} a closed convex set [9] and an
operator T : K1 → C[0, 1] by

T u(t) =

∫ 1

0

G(t, s)ϕq(

∫ 1

0

H(s, τ)a(τ)f(u(τ))dτ)ds. (2.19)

By lemma (2.2), u is a solution of the boundary value problem (1.5) if and only if u
is a fixed point of T . For any u ∈ K1, using (W2) and lemma (2.3), we obtain

T u(t) =
1

Γ(β)

∫ t

0

(t− s)β−1ϕq(

∫ 1

0

H(s, τ)a(τ)f(u(τ))dτ)ds

+
tγ

(1− γ)(Γ(β − 1))

∫ 1

0

(1− s)β−2ϕq(

∫ 1

0

H(s, τ)a(τ)f(u(τ))dτ)ds

≤ 1

Γ(β)

∫ t

0

(t− s)β−1ϕq(

∫ 1

0

H(1, τ)a(τ)δLϕp(ρ)dτ)ds

+
tγ

(1− γ)(Γ(β − 1))

∫ 1

0

(1− s)β−2ϕq(

∫ 1

0

H(1, τ)a(τ)δLϕp(ρ))dτ)ds

≤ (
1

Γ(β + 1)
+

1

(1− γ)

γ

Γ(β)
)ϕq(

∫ 1

0

H(1, τ)a(τ)dτ)ϕq(δ)ϕq(L)ρ

= ϖ1ϕq(

∫ 1

0

H(1, τ)a(τ)dτ)ϕq(δ)ϕq(L)ρ ≤ ρ,

which implies that T (K1) ⊆ K1 and also demonstrate that T is uniformly bounded.
In order to show the compactness of the operator T , we only need to show that it is
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equicontinuous. For u ∈ K1 and t1, t2 ∈ [0, 1] with t1 ≤ t2, we have

| T u(t2)− T u(t1) |=|
∫ 1

0

(G(t2, s)−G(t1, s))ϕq(

∫ 1

0

H(s, τ)a(τ)f(u(τ))dτ)ds |

≤
∫ 1

0

| G(t2, s)−G(t1, s) | ϕq(

∫ 1

0

H(s, τ)a(τ)f(u(τ))dτ)ds,

which in view of (2.8) implies that | T u(t2) − T u(t1) |→ 0 as t1 → t2. Hence by
Arzela Ascoli theorem, T is comapact. By Schauder fixed point theorem T has a
fixed point in K1. �
Theorem 2.5. Under the assumption (W1) and (W3), the boundary value problem
for fractional differential equation (1.5) has at least one positive solution.

Proof. Let b > 0 as given in (W3). Define χ = max0≤x≤bf(x). Then f(x) ≤ χ for
0 ≤ x ≤ b. In view of (W3), we have

ϖ12
q−1ϕq(M)ϕq(

∫ 1

0

H(1, τ)a(τ)dτ) < 1.

Choose b∗ > b large enough such that

ϖ12
q−1(ϕq(χ) + ϕq(M)b∗)ϕq(

∫ 1

0

H(1, τ)a(τ))dτ) < b∗. (2.20)

Define K1 = {u ∈ C[0, 1] : 0 ≤ u(t) ≤ b∗ on [0, 1]}. For u ∈ K1, define S1 = {t ∈
[0, 1] : 0 ≤ u(t) ≤ b}, S2 = {t ∈ [0, 1] : b < u(t) ≤ b∗}. Then we have S1 ∪ S2 = [0, 1]
and S1 ∩ S2 = ∅ and in view of (2.17), it follows that

f(u(t)) ≤ Mϕp(u(t)) ≤ Mϕp(b
∗) for t ∈ S2. (2.21)

For u ∈ K1, using Lemma (2.3) and (2.17), it follows that

T u(t) =
1

Γ(β)

∫ t

0

(t− s)β−1ϕq(

∫ 1

0

H(s, τ)a(τ)f(u(τ))dτ)ds

+
tγ

1− γ

1

Γ(β − 1)

∫ 1

0

(1− s)β−2ϕq(

∫ 1

0

H(s, τ)a(τ)f(u(τ))dτ)ds

≤ ϖ1ϕq(

∫ 1

0

H(1, τ)a(τ)f(u(τ))dτ)

= ϖ1ϕq(

∫
S1

H(1, τ)a(τ)f(u(τ))dτ +

∫
S2

H(1, τ)a(τ)f(u(τ))dτ)

≤ ϖ1ϕq(χ

∫
S1

H(1, τ)a(τ))dτ +Mϕp(b
∗)

∫
S2

H(1, τ)a(τ))dτ)

≤ ϖ1ϕq(χ+Mϕp(b
∗))ϕq(

∫ 1

0

H(1, τ)a(τ))dτ).

From (2.20) and by the help of inequality (a + b)r ≤ 2r(ar + br) for any a, b, r > 0,
we have

0 ≤ T u(t) ≤ ϖ12
q−1(ϕq(χ) + ϕq(M)b∗)ϕq(

∫ 1

0

H(1, τ)a(τ))dτ) ≤ b∗,
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which implies that T (K2) ⊆ K2. Hence by Schauder fixed point theorem T has a
fixed point u ∈ K1. �
Theorem 2.6. Assume that (W1), (W4) and (W5) hold. Then the fractional differ-
ential equation (1.5) has a unique positive solution

Proof. Define P = {u ∈ C[0, 1] : u(t) ≥ 0 on [0,1]}. Then P is a normal solid cone in
C[0, 1] with P o = {u ∈ C[0, 1] : u(t) > 0 on [0,1]}. Let T : P → C[0, 1] be defined
by (2.19) We show that T is θ−concave increasing operator. For u1, u2 ∈ P with
u1 ≥ u2 we have T (u1) ≥ T (u2) on [0, 1], and form f(ku) ≥ ϕq(k

θ)f(u) we have the
following estimates

T (ku(t)) ≥
∫ 1

0

G(t, s)ϕq(

∫ 1

0

H(t, τ)ϕq(k
θ)f(u)dτ)ds

= kθ
∫ 1

0

G(t, s)ϕq(

∫ 1

0

H(t, τ)f(u)dτ)ds = kθT (u(t)),

which implies that T is θ−concave operator. Thus T has a unique fixed point �
Example 2.7. Consider the following boundary value problem

D2.5(ϕp(D
2.5u(t))) + tu(t) = 0,

u(0) = 0, 1/2u′(1) = u′(0), u′′(0) = 0

ϕp(D
2.5u(0)) = 0, ϕp(D

2.5u(1/2)) = (ϕp(D
2.5u(1)))′, (ϕp(D

2.5u(0)))′′ = 0.

(2.22)

Here we have α = β = 2.5, ξ = γ = 1/2, a(t) = t, f(u(t)) = u(t). By simple
computation, we obtain 0 < L ≤ 1.7807, δ = 1/2. Choose L = 1 and δ = 1/2,
the conditions (W1) and (W2) are satisfied. Hence, by theorem (2.4), the fractional
differential equation (2.22) has at least one positive solution.

Example 2.8. For the following boundary value problem

D2.5(ϕp(D
2.5u(t))) + t 3

√
u(t) = 0,

u(0) = 0, γu′(1) = u′(0), u′′(0) = 0

ϕp(D
2.5u(0)) = 0, ϕp(D

2.5u(1/2)) = (ϕp(D
2.5u(1)))′,

(ϕp(D
2.5u(0)))′′ = 0,

(2.23)

we have α = β = 2.5, ξ = η = 1/2, a(t) = t, f(u(t)) = 3
√
u(t) and by simple

computation we get M < .4337 and thus by choosing M = .3333, b = 1 and q = 2,
we see that (2.23) satisfy (W1) and (W3). Hence by theorem (2.4), the fractional
differential equation (2.23) has at least one positive solution.

Example 2.9.

D2.5(ϕp(D
2.5u(t))) + t

√
u(t) = 0,

u(0) = 0, γu′(1) = u′(0), u′′(0) = 0

ϕp(D
2.5u(0)) = 0, ϕp(D

2.5u(1/2)) = (ϕp(D
2.5u(1)))′, (ϕp(D

2.5u(0)))′′ = 0.

(2.24)
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For the uniqueness of solution for fractional differential equation (2.24), we apply
theorem (2.6). In equation (2.24), we have α = β = 2.5, ξ = γ = 1/2, a(t) = t,

f(u(t)) =
√
u(t) it is clear that (2.24) satisfy conditions (W1), (W4). Also considering

θ = 1/2, W5 is satisfied. Thus by theorem (2.6), fractional differential equation (2.24)
has a unique solution.
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