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Abstract It is well known that the parabolic partial differential equations in two or
more space dimensions with overspecified boundary data, feature in the math-
ematical modeling of many phenomena. In this article, an inverse problem
of determining an unknown time-dependent source term of a parabolic equa-
tion in general dimensions is considered. Employing some transformations,
we change the inverse problem to a Volterra integral equation of convolution-
type. By using an explicit procedure based on Sinc function properties, the
resulting integral equation is replaced by a system of linear algebraic equa-
tions. The convergence analysis is included, and it is shown that the error
in the approximate solution is bounded in the infinity norm by the condition
number and the norm of the inverse of the coefficient matrix multiplied by a
factor that decays exponentially with the size of the system. Some numer-
ical examples are given to demonstrate the computational efficiency of the
method.
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1. Introduction

Over the last few years, it has become increasingly apparent that many
physical phenomena can be described in terms of parabolic partial differential
equations with source control parameters. This type of equations arise, for
example, in the study of heat conduction processes, thermoelasticity, chem-
ical diffusion and control theory [2-17]. Growing attention is being paid to
the development, analysis and implementation of accurate methods for the
numerical solution of parabolic inverse problems, i.e. for the determination of
some unknown function p(t) in the parabolic partial differential equations.

Suppose that Ω is a bounded simply connected domain in Rm with bound-
ary ∂Ω ∈ C2. We consider the initial boundary value problem for a parabolic
equation in the cylinder Q = Ω × (0, T ), where T > 0, with lateral surface
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S = ∂Ω× (0, T ). In this problem, not only the temperature but also the com-
ponent of the source dependent of time is assumed unknown, while additional
information , or overdetermination, is given. The main contribution of this
article is to employ the Sinc-collocation method to approximate the solution
of the following inverse problem, i.e. to find a pair of functions {u, p} in the
following parabolic equation

∂u(x, t)

∂t
= ∆u(x, t) + p(t)u(x, t) + q(x, t), (x, t) ∈ Q, (1.1)

with the initial-boundary conditions

u(x, 0) = f(x), x ∈ Ω, (1.2)

u(x, t) = 0, (x, t) ∈ S, (1.3)

subject to the overspecification

u(x∗, t) = E(t), (x∗, t) ∈ Q, (1.4)

or ∫
Ω
u(x, t)dmx = E(t), t ∈ (0, T ), (1.5)

where ∆ is Laplace operator and f , q and E are given functions.
The inverse problem above and other similar problems have been studied

by many authors [2-5], [21-23]. Under some suitable assumptions on the data,
it was shown in [3, 18] that a global solution holds for the one-dimensional
case. For problem (1.1)-(1.3) and (1.5), a classical global solution has been
obtained in [22], where the potential theoretic representation of the solution
was employed. In [4], the authors considered the inverse problem in more
general form

∂u(x, t)

∂t
= ∆u(x, t) + p(t)u(x, t) + q(x, t, u, ux, p(t)), (x, t) ∈ Q,

u(x, 0) = f(x), x ∈ Ω,

u(x, t) = g(x, t), (x, t) ∈ S,

subject to the overspecification

u(x∗, t) = E(t), (x∗, t) ∈ Q,

or ∫
G(t)

Φ(x, t)u(x, t)dmx = E(t), t ∈ (0, T ),

where F , f , g, G and E are known functions. For each of the two problems
stated above, they demonstrated the existence, uniqueness and continuous
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dependence upon the data under some reasonable assumptions on the data.
Also, various numerical methods are developed to find the numerical affects
of this problem in one-dimensional case [7-11, 25]. The articles [12-17] have
investigated the two or three-dimensional versions.

Sinc methods have increasingly been recognized as powerful tools for attack-
ing problems in applied mathematics [1, 19, 20, 24, 26, 27]. By comparison
to the finite difference, finite element and boundary element methods, the
Sinc collocation approach has been shown to be more suitable in handling
singularities, boundary layers and semi-infinite domains. Furthermore, the
residual error entailed in the Sinc collocation method is known to exhibit an
exponential convergence rate.

The remainder of the present paper is divided into four sections. In section
2, we describe the collocation procedure by means of Sinc method for approx-
imating convolution integrals. Section 3 contains the transformation of the
inverse problem into a Volterra integral equation and the construction of the
new Sinc-collocation method to replace the integral equation by an explicit
system of linear algebraic equations. In section 4, convergence and error es-
timates are proved. Finally, some numerical results are presented in section
5.

2. Collocating convolutions

The Sinc function is defined on the whole real line by

sinc(x) =

{
sin(πx)

πx , x ̸= 0,
1, x = 0.

The translated Sinc functions with evenly spaced nodes are given by

S(k, h)(x) = sinc(
x− kh

h
),

and are called the kth Sinc functions where k is an integer and h is a step size
appropriately chosen depending on a given positive integer N . For purposes
of Sinc approximation, consider first the case of a finite interval (a, b).Define
ϕ by w = ϕ = log[(z − a)/(b − z)]; this function ϕ provides a conformal
transformation of the ”eye-shaped” region D = {z ∈ C : |arg[(z−a)/(b−z)]| <
d}, onto the strip Dd defined by Dd = {z ∈ C : |Im(z)| < d}. The same
function ϕ also provided a one-to-one transformation of (a, b) onto the real
line R. The Sinc points are defined for h > 0 and k = 0,±1,±2, ..., by
zk = ϕ−1(kh) = (a+ bekh)/(1 + ekh).

There are three important spaces of functions, H1(D), Lα(D) and Mα(D)
associated with Sinc approximation on the interval (a, b).
Let H1(D) denote the family of all functions f that are analytic in D, such
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that ∫
∂D

|f(z)||dz| <∞.

Corresponding to number α, let Lα(D) be the set of all analytic functions f ,
for which there exists a constant c1, such that

|f(z)| ≤ c1
|ρ(z)|α

(1 + |ρ(z)|)2α
, z ∈ D.

The family Mα(D) consists of all functions f that are analytic in D and
continuous in D such that g ∈ Lα(D), where

g(z) = f(z)− f(a) + ρ(z)f(b)

1 + ρ(z)
.

Now, we describe the Sinc-collocation procedure for approximating convo-
lution µ of functions f and g, defined by the integral

µ(x) =

∫ x

a
f(x− t)g(t)dt, x ∈ (a, b). (2.1)

The method of the present section provides an explicit procedure for accurate
approximation of µ when either of f or g has singularities at one of both
endpoints of its interval of definition, or in the case that µ has singularities at
one or both of the endpoints of (a, b) [27].

We assume that g ∈ H1(D), and that f is analytic in a domain Df , with
ϕf denoting a conformal mapping of Df onto Dd, and ϕf : (0, c) → R, c being
an arbitrary number on the interval [2(b−a),∞]. Corresponding to a positive

integer N we set m = 2N +1, and we determine h via the formula h = ( πd
αN )

1
2 .

Let

δ
(−1)
jk =

1

2
+

∫ j−k

0

sin(πx)

πx
dx,

then we define a matrix whose (j, k)th entry is given by δ
(−1)
jk as I(−1) = [δ

(−1)
jk ],

and the square matrix Am is obtained by

Am = hI(−1)diag[
1

ϕ′(z−N )
, ...,

1

ϕ′(zN )
].

Throughout this paper, the Laplace transformation means the function F
defined by

F (s) =

∫ c

0
f(t)e−

t
sdt,

where c defined as above, and we shall assume that the Laplace transformation
exists for some c ∈ [2(b−a),∞], for all s on the right half of the complex plane
i.e., Ω+ = {z ∈ C : Re(z) > 0}.
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Now, by above assumptions, we describe the approximation procedure for µ
in (2.1). If the nonsingular matrixXm and complex numbers sj are determined
such that

Am = Xmdiag[s−N , ..., sN ]X−1
m ,

then, square matrix F (Am) may be defined via the equation

F (Am) = Xmdiag[F (s−N ), ..., F (sN )]X−1
m .

Now, define column vectors Gm and Pm by

Gm = [g(z−N ), ..., g(zN )]T ,

Pm = [µ−N , ..., µN ]T = F (Am)Gm,

then, the component µj of vector Pm approximates the value µ(x) at the Sinc
point x = zj . Thus, the approximation of µ on (a, b) takes the form

µ(x) ≈
N∑

j=−N

µjωj(x) = {F (Am)Gm}TW (x), x ∈ (a, b), (2.2)

where W (x) = [ω−N (x), ..., ωN (x)]T , and {ωj} is a Sinc basis as follows

λj(x) = S(j, h)oϕ(x), j = −N, ..., N,

ωj(x) = λj(x), j = −N + 1, ..., N − 1,

ω−N (x) = {1 + e−Nh}{ 1

1 + ρ(x)
−

N∑
j=−N+1

λj(x)

1 + ejh
},

ωN (x) = {1 + e−Nh}{ ρ(x)

1 + ρ(x)
−

N−1∑
j=−N

ejhλj(x)

1 + ejh
}.

Note that the functions ωj defined above satisfy the relation ωj(zk) = δjk.

Theorem 2.1. [27] Let µ be defined as (2.1) where the Laplace transformation
of f with c ≥ 2(b − a) exists for all s in Ω+, and let F (s) = O(s) as s → ∞
in Ω+. Let g ∈ H1(D), and let α and αf , be positive constants such that
0 < α ≤ 1. Set

P (r, τ) =

∫ τ

a
f(r + τ − η)g(η)dη,

and assume that P (r, .) ∈ Mα(D′), uniformly, for r ∈ [0, b− a], and also that

|Pr(r, τ)| ≤ c2
[ρf (r)]

αfϕ′f (r)

[1 + ρf (r)]
2αf

,
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for all r ∈ [0, b − a], and for all τ ∈ D, with c2 a constant independent of r

and τ . Let h = ( πd
αN )

1
2 , then there exists a constant c3 which is independent of

N such that

∥µ− {F (Am)Gm}TW∥∞ ≤ c3N
1
2 e−(πdαN)

1
2 .

3. Method discussion

In this section the Sinc-collocation method is implemented for solving the
parabolic inverse problem. For this end, first, we change the inverse problem
to a Volterra integral equation of convolution type, then by using the colloca-
tion procedure for approximating convolution integrals described in previous
section, the numerical solution for resulting integral equation will be given.

Employing a pair of transformations

r(t) = exp{−
∫ t

0
p(s)ds},

v(x, t) = r(t)u(x, t),

the problem (1.1)-(1.5) will become

∂v(x, t)

∂t
= ∆v(x, t) + r(t)q(x, t), (x, t) ∈ Q, (3.1)

v(x, 0) = f(x), x ∈ Ω, (3.2)

v(x, t) = 0, (x, t) ∈ S, (3.3)

v(x∗, t) = r(t)E(t), (x∗, t) ∈ Q, (3.4)

or ∫
Ω
v(x, t)dmx = r(t)E(t), t ∈ (0, T ). (3.5)

Obviously, if we obtain {v, r} from (3.1)-(3.3) and (3.4) or (3.5) then {u, p}
can be found as

u(x, t) =
v(x, t)

r(t)
,

p(t) = −r
′(t)

r(t)
.

If we assume that the function r(t) is known, then, the direct problem
(3.1)-(3.3) has the following solution [6]

v(x, t) = v0(x, t) +

∫ t

0

∫
Ω
G(x,y, t− τ)q(y, τ)r(τ)dmydτ, (3.6)
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where

v0(x, t) =

∫
Ω
G(x,y, t)f(y)dmy,

G(x,y, t) = θ(x− y, t)− θ(x+ y, t),

and

θ(x, t) =
∑
n∈Zm

K(x+ 2n, t),

with

K(x, t) =
1

(4πt)m/2
exp{−∥x∥2

4t
}.

Replacing x = x∗ in (3.6) and using additional condition (3.4), or integrating
(3.6) on Ω and using additional condition (3.5) yields the following integral
equation

r(t)E(t) = g(t) +

∫ t

0
Ψ(t− τ, τ)r(τ)dτ, (3.7)

where for problem (3.1)-(3.4), g(t) = v0(x
∗, t), and the function Ψ can be

found by ∫
Ω
G(x∗,y, t− τ)q(y, τ)dmy = Ψ(t− τ, τ),

or for problem (3.1)-(3.3) and (3.5), g(t) =
∫
Ω v0(x, t)d

mx, and the function
Ψ can be found by∫

Ω

∫
Ω
G(x,y, t− τ)q(y, τ)dmxdmy = Ψ(t− τ, τ).

Taking them into account, we can obtain

Ψ(t− τ, τ) =

∞∑
n=1

hn(t− τ)φn(τ),

where hn(t) = exp{−n2π2t}, and there exists a constant K such that

|φn(τ)| ≤ K sup
(y,τ)∈Q

|q(y, τ)|, τ ∈ (0, T ), n ∈ N.

For a positive integer M denote

ΨM (t− τ, τ) =

M∑
n=1

hn(t− τ)φn(τ),

we may write∫ t

0
|Ψ(t−τ, τ)−ΨM (t−τ, τ)||r(τ)|dτ ≤ K

π2
ψ′(M+1) sup

τ∈(0,T )
|r(τ)| sup

(y,τ)∈Q
|q(y, τ)|,
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where ψ is the digamma function. Thus, by solving the following approximat-
ing integral equation

r(t)E(t) = g(t) +

∫ t

0
ΨM (t− τ, τ)r(τ)dτ, (3.8)

we obtain an approximation for r(t), then, if we replace it in (3.6), we will have
the approximate solution for v(x, t). Therefore, in the remaining part of this
paper we try to solve the integral equation (3.8), by using the Sinc-collocation
method.

Let Γ = (0, T ), By exploiting the above definitions, we take

D = {z ∈ C : |arg( z

T − z
)| < d ≤ π

2
},

ϕ(x) = ln(
x

T − x
),

and the Sinc grid points are

xk =
Tekh

1 + ekh
, k = −N, ..., N.

Consider the integral equation (3.8), the ”Laplace transformation” for hn, with
c = ∞, can be determined as

Hn(s) =

∫ ∞

0
hn(t)e

− t
sdt =

s

1 + n2π2s
, s ∈ Ω+, n ∈ N.

By using the numerical procedure in the previous section for convolution in-
tegrals we may write∫ t

0
hn(t− τ)φn(τ)r(τ)dτ ≈ {Hn(Am)φ̄nR}TW (t), (3.9)

where φ̄ is the diagonal matrix defined by φ̄n = diag[φn(x−N ), ..., φn(xN )],
and

R = [r(x−N ), ..., r(xN )]T . (3.10)

Substituting (3.9) in equation (3.8), we obtain

E(t)r(t)−
M∑
n=1

{Hn(Am)φ̄nR}TW (t) = g(t). (3.11)

Equation (3.11) is collocated at 2N + 1 points. For suitable collocation
points, we use the Sinc grid points xk, k = −N, ..., N . Thus we have 2N + 1
linear algebraic equations which can be solved for the unknown coefficients
r(xj), j = −N, ..., N . This system in the matrix form is given by

BR = Y, (3.12)
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where

B = Ē −
M∑
n=1

Hn(Am)φ̄n,

and

Y = [g(x−N ), ..., g(xN )]T .

By solving the linear system (3.12), we obtain approximate solutions rj , j =
−N, ..., N . Then we employ a method similar to Nyström’ s idea and write

r̃m(t) =
1

E(t)
{g(t) +

M∑
n=1

{Hn(Am)φ̄nR̃}TW (t)}, (3.13)

where m = 2N + 1 and

R̃ = [r−N , ..., rN ]T . (3.14)

4. Convergence analysis

In this section, we discuss the convergence of the Sinc-collocation method
described in the previous section. We start with the following definition.

Definition 4.1. Let Gα(D), with 0 < α ≤ 1, denote the family of all functions
g ∈ H1(D), such that

|Θr(r, τ, n)| ≤ C
(n)
1

rξn−1

(1 + r)2ξn
, r ∈ (0, T ), τ ∈ D, n ∈ N,

with C
(n)
1 and ξn constants independent of r and τ , where

Θ(r, τ, n) =

∫ τ

0
hn(r + τ − η)g(η)dη,

and Θ(r, ., n) ∈ Mα(D′), uniformly, for r ∈ (0, T ).

The following auxiliary lemma will be needed in the subsequent analysis.

Lemma 4.2. Suppose that R and R̃ are defined by (3.10) and (3.14), respec-
tively. Then for rφn ∈ Gα(D),

∥R− R̃∥ ≤ C2∥B−1∥N
1
2 e−(πdαN)

1
2 ,

where C2 is a positive constant which is independent of N .

Proof. First, we have

∥R− R̃∥ = ∥R−B−1Y ∥ ≤ ∥B−1∥∥BR− Y ∥.
Let sk be the kth component of the vector S = BR− Y , that is,

sk = {BR}k − g(xk),
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where {BR}k is the kth component of the vector BR. From (3.8), we have

g(xk) = r(xk)E(xk)−
M∑
n=1

∫ xk

0
hn(t− τ)φn(τ)r(τ)dτ,

and from (3.12)

{BR}k = E(xk)r(xk)−
M∑
n=1

{Hn(Am)φ̄nR}TW (xk).

Since

∥BR−Y ∥ = max
−N≤k≤N

|sk|

≤
M∑
n=1

max
−N≤k≤N

|
∫ xk

0
hn(t−τ)φn(τ)r(τ)dτ−{Hn(Am)φ̄nR}TW (xk)|,

using theorem 1, there exists a constant C2 independent of N such that

∥BR− Y ∥ ≤ C2N
1
2 e−(πdαN)

1
2 .

Therefore we have

∥R− R̃∥ ≤ C2∥B−1∥N
1
2 e−(πdαN)

1
2 .

Theorem 4.3. Suppose that r(t) is the exact solution of integral equation
(3.8), and let r̃m(t) be the approximate solution of equation (3.8) given by
(3.13). Then for rφn ∈ Gα(D), there exists a positive constant C independent
of N such that

sup
t∈(0,T )

|r(t)− r̃m(t)| ≤ Cλ1{Cond(B) + λ2∥B−1∥+ 1}N
1
2 e−(πdαN)

1
2 ,

where

λ1 = sup
t∈(0,T )

| 1

E(t)
|, λ2 = sup

t∈(0,T )
|E(t)|.

Proof. Define

rm(t) =
1

E(t)
{g(t) +

M∑
n=1

{Hn(Am)φ̄nR}TW (t)}, (4.1)

then

|r(t)− r̃m(t)| ≤ |r(t)− rm(t)|+ |rm(t)− r̃m(t)|. (4.2)

By theorem 1, there exists a constant C3 such that
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sup
t∈(0,T )

|r(t)−rm(t)| ≤ λ1

M∑
n=1

sup
t∈(0,T )

|
∫ t

0
hn(t−τ)φn(τ)r(τ)dτ−{Hn(Am)φ̄nR}TW (t)|

≤ λ1C3N
1
2 e−(πdαN)

1
2 , (4.3)

where

λ1 = sup
t∈(0,T )

| 1

E(t)
|.

Also we have

sup
t∈(0,T )

|rm(t)−r̃m(t)| ≤ λ1

M∑
n=1

sup
t∈(0,T )

|{Hn(Am)φ̄nR}TW (t)−{Hn(Am)φ̄nR̃}TW (t)|

= λ1 sup
t∈(0,T )

|{R− R̃}T
M∑
n=1

{Hn(Am)φ̄n}TW (t)|

≤ λ1∥R− R̃∥∥
M∑
n=1

Hn(Am)φ̄n∥

= λ1∥R− R̃∥∥B − Ē∥ ≤ λ1∥R− R̃∥{∥B∥+ λ2},
where

λ2 = sup
t∈(0,T )

|E(t)|.

Using Lemma 1, we have

sup
t∈(0,T )

|rm(t)− r̃m(t)| ≤ C4λ1{∥B∥+ λ2}∥B−1∥N
1
2 e−(πdαN)

1
2 . (4.4)

Finally, substituting (4.3) and (4.4) in (4.4), the proof is completed.

5. Numerical results

In this section, we illustrate the use of our algorithm by displaying the
results obtained from its application to some test problems. In these examples
we take α = 1 and d = π

2 , and therefore h = π√
2N

. In practical application,

data contain random noise. We will illustrate the effect of the solution in
virtue of the noisy data

Eδ(t) = E(t)(1 + δ sin 50t),

fδ(x) = f(x)(1 + δ sin 50x),

where δ is the noise parameter.
Example 1. Consider the following inverse problem
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Figure 1. Plot of exact and approximate solutions for p(t) in Example 1.
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Figure 2. Error of approximation of u(x,t) with N = 15 in Example 1.

∂u

∂t
=
∂2u

∂x2
+ p(t)u(x, t)+ e−t(−2 cosx− (1+ t2)(x− 1) sinx), 0 < x, t < 1,

u(x, 0) = (x− 1) sinx, 0 < x < 1,

u(0, t) = u(1, t) = 0, 0 < t ≤ 1,∫ 1

0
u(x, t)dx = e−t(sin 1− 1), 0 ≤ t ≤ 1,

for which the exact solution is u(x, t) = e−t(x−1) sinx, and p(t) = 1+ t2. The
example has been solved by taking different values of N . The approximation
of p(t) for N = 2 and N = 10, is shown in Figure 1. In Figure 2, the error
of approximation of u(x, t) for N = 15 is plotted. Also, the exact solution
p(t) together with the numerical one for various values of the noise parameter
δ = 1%, 2% and 5% are shown in Figure 3.
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Figure 3. Plot of exact and approximate solution for p(t) with noisy
data in Example 1 when N=10.

Table 1. Results for u(x, t) when t=0.5 in Example 2.

(x, y) u(x, y, 0.5) N = 5 N = 10 N = 15 N = 20 N = 25
exact error error error error error

(0.1,0.1) -0.124643 7.1× 10−3 4.2× 10−3 4.8× 10−5 7.6× 10−6 2.0× 10−6

(0.2,0.2) -0.421483 6.2× 10−4 2.3× 10−4 3.8× 10−6 7.0× 10−6 1.4× 10−6

(0.3,0.3) -0.76141 5.4× 10−4 1.3× 10−4 8.2× 10−6 3.5× 10−6 7.2× 10−7

(0.4,0.4) -1.02296 3.7× 10−4 1.6× 10−4 1.2× 10−5 5.9× 10−6 7.9× 10−7

(0.5,0.5) -1.12042 5.5× 10−4 3.3× 10−4 4.8× 10−5 8.3× 10−6 2.2× 10−6

(0.6,0.6) -1.02296 2.1× 10−3 7.9× 10−4 5.6× 10−5 4.5× 10−6 1.4× 10−6

(0.7,07) -0.76141 8.0× 10−3 4.0× 10−4 4.2× 10−5 7.1× 10−6 2.5× 10−6

(0.8,0.8) -0.421483 3.6× 10−3 1.9× 10−3 1.7× 10−4 5.7× 10−5 7.4× 10−6

(0.9,0.9) -0.124643 8.7× 10−3 5.2× 10−3 7.1× 10−4 8.2× 10−5 9.6× 10−6

Example 2. Consider the following inverse problem

∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2
+p(t)u(x, y, t)+2et+1 sinπy(−1+t(x−1)x), 0 < x, y, t < 1,

u(x, y, 0) = e(x−1)x sinπy, 0 < x, y < 1,

u(0, y, t) = u(1, y, t) = u(x, 0, t) = u(x, 1, t) = 0 0 < t ≤ 1,

u(0.2, 0.5, t) = − 4

25
et+1, 0 ≤ t ≤ 1,
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Figure 4. Plot of exact and approximate solutions for p(t) in Example 2.
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Figure 5. Plot of exact and approximate solution for p(t) with noisy
data in Example 2 when N=10.

for which the exact solution is u(x, t) = et+1x(x− 1) sinπy, and p(t) = 1− 2t.
The example has been solved by taking different values of N . We report the
absolute value of the errors of u(x, y, t) for N = 5, 10, 15, 20 and 25 in Table 1.
The approximation of p(t) for N = 2 and N = 10, is shown in Figure 4. Also,
the exact solution p(t) together with the numerical one for various values of
the noise parameter δ = 1%, 2% and 5% are shown in Figure 5.
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