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1. Introduction

The study of exact solutions of nonlinear evolution equations plays an important role
in soliton theory and explicit formulas of NPDEs. Also, explicit formulas may pro-
vide physical information and help us to understand the mechanism of related physical
models. A large number of such equations have been studied in these contexts, and
numerous analytic and computational effective techniques have been proposed to in-
vestigate these types of equations.
Phenomena in physics and other fields are often described by nonlinear evolution
equations. Nonlinear partial differential equations (NPDEs) are widely used to de-
scribe complex phenomena in various fields of sciences, especially in physics. Some of
these nonlinear wave solutions are the cnoidal waves, solitons, solitary waves, shock
waves, compactons, stumpons, covatons, cuspons, peakons propeller solitons and sev-
eral many others. These solutions are all indeed very useful in various areas of Applied
Mathematics and Theoretical Physics.Therefore solving nonlinear problems plays an
important role in nonlinear sciences.
Some of these methods that have been recently developed are exponential func-
tion method [4,5], Fan’s F-expansion method [6,7], the tanh–sech method [8–10],
extended tanh method [11–13], sine–cosine method [14–16], homogeneous balance
method [17,18], first integral method [19-21] and so on [1-3, 23-29].
In this paper we consider the (3+1) Jimbo–Miwa equation [22],

uxxx + 3uxuxy + 3uyuxx + 2uyt − 3uxz = 0. (1.1)
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This work is organized as follows. In the next section we give brief description of the
Homogeneous balance method. In the Sections 3 we construct soliton solutions for
the (3+1) Jimbo–Miwa equation. In the last section we summarize our results.

2. Algorithm of the Homogeneous balance method

For a given partial differential equation

G(u, ux, ut, uxx, utt, ....) = 0, (2.1)

Our method mainly consists of four steps:
Step 1 : We seek complex solutions of Eq.(2.1) as the following form:

u = u(ξ), ξ = ik(x− ct), (2.2)

Where k and c are real constants. Under the transformation (2.2), Eq.(2.1) becomes
an ordinary differential equation

N(u, iku′,−ikcu′,−k2u′′, .....) = 0, (2.3)

Whereu′ = du
dξ
.

Step 2 : We assume that the solution of Eq.(2.3) is of the form

u(ξ) =

n
∑

i=0

aiφ
i(ξ), (2.4)

Where ai(i = 1, 2, .., n) are real constants to be determined later and φ satisfy the
Riccati equation

φ′ = aφ2 + bφ+ c. (2.5)

Eq.(2.5) admits the following solutions:

Case1: Let φ =
n
∑

i=0

bi tanh
i ξ,Balancing φ′with φ2 in Eq.(2.5) gives m = 1so

φ = b0 + b1 tanh ξ, (2.6)

Substituting Eq. (2.6)into Eq.(2.5), we obtain the following solution of Eq.(2.5)

φ = −
1

2a
(b + 2 tanh ξ) , ac =

b2

4
− 1. (2.7)

Case2: when a = 1, b = 0,the Riccati Eq.(2.5) has the following solutions

φ = −
√
−c tanh

(√
−cξ

)

, c < 0,
φ = − 1

ξ
, c < 0

φ =
√
c tan (

√
cξ) , c > 0.

(2.8)

Case3: We suppose that the Riccati Eq.(2.5) have the following solutions of the
form:

φ = A0 +

n
∑

i=1

sinhi−1 (Ai sinhω +Bi coshω) , (2.9)
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Where dω
dξ

= sinhω or dω
dξ

= coshω. It is easy to find that m = 1by Balancing

φ′withφ2. So we choose

φ = A0 +A1 sinhω +B1 coshω, (2.10)

Where dω
dξ

= sinhω, we substitute (2.10) and dω
dξ

= sinhω, into (2.5) and set the coef-

ficients of sinhi ω, coshi ω (i = 0, 1, 2) to zero. We obtain a set of algebraic equations
and solving these equations we have the following solutions

A0 = −
b

2a
,A1 = 0, B1 =

1

2a
, (2.11)

where c = b2−4
4a and

A0 = −
b

2a
,A1 = ±

√

1

2a
,B1,=

1

2a
(2.12)

where c = b2−1
4a . To dω

dξ
= sinhω we have

sinhω = − cschξ, coshω = − coth ξ. (2.13)

From (2.11)-(2.13), we obtain

φ = −
b+ 2 coth ξ

2a
, (2.14)

where c = b2−4
4a and

φ = −
b± cschξ + coth ξ

2a
, (2.15)

where c = b2−1
4a .

Step3. Substituting (2.6-2.15) into (2.3) along with (2.5), then the left hand side
of Eq.(2.3) is converted into a polynomial inF (ξ); equating each coefficient of the
polynomial to zero yields a set of algebraic equations.
Step4. Solving the algebraic equations obtained in step 3, and substituting the results
into (2.4), then we obtain the exact traveling wave solutions for Eq. (2.1).
Remark 1: If c = 0 , then the Riccati Eq. (2.5) reduces to the Bernoulli equation

φ′ = aφ2 + bφ, (2.16)

The solution of the Bernoulli Eq. (2.16) can be written in the following form [23]:

φ = b

[

cosh [b (ξ + ξ0)] + sinh [b (ξ + ξ0)]

1− a cosh [b (ξ + ξ0)]− a sinh [b (ξ + ξ0)]

]

, (2.17)

where ξ0 is integration constant.
Remark 2: If b = 0, then the Riccati Eq. (2.5) reduces to the Riccati equation

φ′ = aφ2 + c,

which the equation above is the special case of the Riccati Eq. (2.5).
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Remark 3: Also, the Riccati Eq.(2.5) admits the following exact solution [23]:

φ = −
b

2a
−

θ

2a
tanh

(

θ

2
ξ

)

+
sech

(

θ
2 ξ
)

C cosh
(

θ
2 ξ
)

− 2a
θ
sinh

(

θ
2 ξ
) , (2.18)

where θ2 = b2 − 4ac and C is a constant of integration.

3. Methodology to the (3+1) Jimbo–Miwa equation

Using the wave transformation

u(x, y, z, t) = U (ξ ) , ξ = kx+ ly +mz + ωt (3.1)

Eq. (1.1) is carried out to the following ODE:

k3U ′′′ + 6k2lU ′U ′′ + (2lω − 3km)U ′′ = 0. (3.2)

After integrating with respect to ξ they obtained the nonlinear ordinary differential
equation in the form

k3lU ′′′ + 3k2l (U ′)
2
+ (2lω − 3km)U ′ = C.

Here C is the constant of integration. Denoting U ′ = V (ξ ) in Eq. above we have the
following equation

k3lV ′′ + 3k2lV 2 + (2lω − 3km)V = C. (3.3)

For the solutions of Eq. (3.3), with the aid of Homogeneous balance method we make
the following ansatz

V (ξ) =
n
∑

i=0

aiφ
i(ξ), (3.4)

where aiare all real constants to be determined, n is a positive integer which can
be determined by balancing the highest order derivative term with the highest order
nonlinear term, then givesn = 2. Therefore, we may choose

V (ξ) = a2φ
2 + a1φ+ a0. (3.5)

Substituting (3.5) along with (2.5) in Eq.(3.3) and then setting the coefficients of
φj(j = 0, 1, 2, 3, 4, 5)to zero in the resultant expression, we obtain a set of algebraic
equations and solving these equations with the aid of Maple we have

a0 =
1

6

−2lw + 3km±
√
4l2w2 − 12lwkm+ 9k2m2 + 48k6la2c2 − 24k6lab2c

k2l
,

a1 = 2kab,
a2 = −2ka2.

(3.6)
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By substituting (3.6) in (3.5) along with (3.7) and (3.1) we have solution of the Eq.
(1.1) as follows

V (ξ) = −
1

2
ka2 (b+ 2 tanh ξ)

2 − kb (b+ 2 tanh ξ)+

−2lw+ 3km±
√
4l2w2 − 12lwkm+ 9k2m2 + 48k6la2c2 − 24k6lab2c

6k2l
.

So

U =
∫

(

−
1

2
ka2 (b+ 2 tanh ξ)

2 − kb (b+ 2 tanh ξ)

)

dξ+
(

−2lw + 3km±
√
4l2w2 − 12lwkm+ 9k2m2 + 48k6la2c2 − 24k6lab2c

6k2l

)

ξ

.

The solution of the (3+1) Jimbo–Miwa equation (1.1) when c < 0 will obtain by
substituting (3.5),(3.6) along with (2.8) and (3.1) as follows

V (ξ) = 2ka2c tanh2
(√

−cξ
)

− 2kab
(√

−c tanh
(√

−cξ
))

+

1

6

−2lw + 3km±
√
4l2w2 − 12lwkm+ 9k2m2 + 48k6la2c2 − 24k6lab2c

k2l
,

So

U =
∫ (

2ka2c tanh2
(√

−cξ
)

− 2kab
(√

−c tanh
(√

−cξ
)))

dξ+

1

6

−2lw + 3km±
√
4l2w2 − 12lwkm+ 9k2m2 + 48k6la2c2 − 24k6lab2c

k2l
ξ,

Soliton solution of (1.1) when c = 0 is

V (ξ) = −
2ka2

ξ2
−

2kab

ξ
+

1

6

−2lw + 3km±
√
4l2w2 − 12lwkm+ 9k2m2 + 48k6la2c2 − 24k6lab2c

k2l
,

and

U =
2ka2

ξ
− 2kab ln ξ+

1

6

−2lw + 3km±
√
4l2w2 − 12lwkm+ 9k2m2 + 48k6la2c2 − 24k6lab2c

k2l
ξ,

when c > 0

V (ξ) = −2ka2c tan2 (
√
cξ) + 2kab (

√
c tan (

√
cξ))+

1

6

−2lw + 3km±
√
4l2w2 − 12lwkm+ 9k2m2 + 48k6la2c2 − 24k6lab2c

k2l
,

and

U =
∫ (

−2ka2c tan2 (
√
cξ) + 2kab (

√
c tan (

√
cξ))

)

dξ+

1

6

−2lw + 3km±
√
4l2w2 − 12lwkm+ 9k2m2 + 48k6la2c2 − 24k6lab2c

k2l
ξ.

From (3.6) in (3.5) along with (2.14) and (3.1) we have solution of the Eq.(1.1) as
follows
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V (ξ) = −
1

2
k (b+ 2 coth ξ)

2 − kb (b+ 2 coth ξ)+

1

6

−2lw + 3km±
√
4l2w2 − 12lwkm+ 9k2m2 + 48k6la2c2 − 24k6lab2c

k2l
,

so

U =
∫

(

−
1

2
k (b+ 2 coth ξ)

2 − kb (b+ 2 coth ξ)

)

dξ+

1

6

−2lw + 3km±
√
4l2w2 − 12lwkm+ 9k2m2 + 48k6la2c2 − 24k6lab2c

k2l
ξ,

where c =
b2 − 4

4a
and

V (ξ) = −
1

2
k (b± cschξ + coth ξ)

2 − kb (b± cschξ + coth ξ)+

1

6

−2lw + 3km±
√
4l2w2 − 12lwkm+ 9k2m2 + 48k6la2c2 − 24k6lab2c

k2l

and

U =
∫

(

−
1

2
k (b± cschξ + coth ξ)

2 − kb (b± cschξ + coth ξ)

)

dξ+

1

6

−2lw + 3km±
√
4l2w2 − 12lwkm+ 9k2m2 + 48k6la2c2 − 24k6lab2c

k2l
ξ,

where c =
b2 − 1

4a
.

In this section we will obtain the solution of Eq. (1.1) from (3.5), (3.6) along with
(2.17) and (2.19)

V (ξ) = −2kb2a2
[

cosh [b (ξ + ξ0)] + sinh [b (ξ + ξ0)]

1− a cosh [b (ξ + ξ0)]− a sinh [b (ξ + ξ0)]

]2

+

2kab2
[

cosh [b (ξ + ξ0)] + sinh [b (ξ + ξ0)]

1− a cosh [b (ξ + ξ0)]− a sinh [b (ξ + ξ0)]

]

+

1

6

−2lw + 3km±
√
4l2w2 − 12lwkm+ 9k2m2 + 48k6la2c2 − 24k6lab2c

k2l
,

and

U =
∫

(

−2kb2a2
[

cosh [b (ξ + ξ0)] + sinh [b (ξ + ξ0)]

1− a cosh [b (ξ + ξ0)]− a sinh [b (ξ + ξ0)]

]2
)

dξ+

∫

(

2kab2
[

cosh [b (ξ + ξ0)] + sinh [b (ξ + ξ0)]

1− a cosh [b (ξ + ξ0)]− a sinh [b (ξ + ξ0)]

])

dξ+

1

6

−2lw + 3km±
√
4l2w2 − 12lwkm+ 9k2m2 + 48k6la2c2 − 24k6lab2c

k2l
ξ.
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From (3.5),(3.6) along with (2.18) and (3.1), we set

V (ξ) = −2ka2









−
b

2a
−

θ

2a
tanh

(

θ

2
ξ

)

+

sech

(

θ

2
ξ

)

C cosh

(

θ

2
ξ

)

−
2a

θ
sinh

(

θ

2
ξ

)









2

+

2kab









−
b

2a
−

θ

2a
tanh

(

θ

2
ξ

)

+

sech

(

θ

2
ξ

)

C cosh

(

θ

2
ξ

)

−
2a

θ
sinh

(

θ

2
ξ

)









+

1

6

−2lw + 3km±
√
4l2w2 − 12lwkm+ 9k2m2 + 48k6la2c2 − 24k6lab2c

k2l

So

U =
∫











−2ka2









−
b

2a
−

θ

2a
tanh

(

θ

2
ξ

)

+

sech

(

θ

2
ξ

)

C cosh

(

θ

2
ξ

)

−
2a

θ
sinh

(

θ

2
ξ

)









2










dξ+

∫









2kab









−
b

2a
−

θ

2a
tanh

(

θ

2
ξ

)

+

sech

(

θ

2
ξ

)

C cosh

(

θ

2
ξ

)

−
2a

θ
sinh

(

θ

2
ξ

)

















dξ+

1

6

−2lw + 3km±
√
4l2w2 − 12lwkm+ 9k2m2 + 48k6la2c2 − 24k6lab2c

k2l
ξ,

Where θ2 = b2 − 4ac and C is a constant of integration.

4. Conclusion

In this paper, the homogeneous balance method has been applied to obtain the new
exact solutions of the (3+1) Jimbo-Miwa equation. This method has the advantages
of being direct and concise. The method proposed in this paper can also be extended
to solve some nonlinear evolution equations in mathematical physics.
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