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Abstract In this paper, a new implicit nonstandard finite difference scheme for conserva-
tion laws preserving total variation diminishing (TVD) property, is proposed. This
scheme is derived by using nonlocal approximation for nonlinear terms of partial
differential equation. Schemes preserving the essential physical property, such as
TVD are of great importance in practice. Such schemes are free of spurious oscilla-
tions around discontinuities. Numerical results for Burgers’ equation are presented.
Comparison of numerical results with a classical difference scheme is given.
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1. Introduction

The general setting of this work is conservation laws in the form

Ut + (f(U))x = 0, x ∈ R, t ∈ [0, T ], U(x, 0) = U0(x), (1.1)

where f(U) is the nonlinear flux function. The equation (1.1) describe the behavior of
many different physical phenomena. For example, in theory of fluid flow, the equations
of motion, continuity and energy can be combined into one conservation equation of
the form (1.1). As typical for partial differential equations, problem (1.1) can not be
completely solved by analytic techniques. Consequently, numerical simulations are of
fundamental importance in gaining some useful insights on the solutions. But, it is
crucial to design numerical methods which replicate essential physical properties of
the solutions [9]. This motivates the following concept of stability [2]:

Definition 1. Assume that the solution of (1.1) satisfies some property (P). A
numerical method approximating (1.1) is called qualitatively stable with respect to
(P) or P-stable if the numerical solutions satisfy property (P) for all values of the
involved step sizes.
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For problems with smooth solutions, usually a linear stability analysis is adequate. For
problems with discontinuous solutions, however, such as solutions to (1.1), a stronger
measure of stability is usually required. Almost all of the standard procedures yield
schemes which are convergent with restriction on the step size. One response to this
situation was the initiation by Mickens [9] of a research program for the investigation
of new methods for constructing finite difference schemes which are convergent for
any step size. These new procedures are called nonstandard finite difference methods
[2, 3, 4, 9]. A formal definition is as follows:

Definition 2. A finite difference method for (1.1) is called nonstandard if at least
one of the following is met
a) In the discrete derivatives the traditional denominator ∆t or ∆x is replaced by a
nonnegative function ϕ(∆t) or ϕ(∆x) such that

ϕ(z) = z +O(z2) as 0 < z → 0.

b) Nonlinear terms are approximated in a nonlocal way, i.e. by a suitable function
of several points of the mesh. For instance, the nonlinear terms U2 and U3 can be
modelled as in Anguelov and Lubuma [2]:

U2 ≈ aU2
k + bUkUk+1, a+ b = 1, a, b ∈ R,

U3 ≈ aU3
k + (1 − a)U2

kUk+1, a ∈ R.

One of the main advantages of the nonstandard finite difference methods is that in
addition to the usual properties of consistency, stability and hence convergence, they
produce numerical solutions which also transfer essential qualitative property of the
exact solution. Physical properties, namely, monotonicity, positivity and boundedness
have received extensive attention in the design of qualitatively stable nonstandard fi-
nite difference schemes [2, 3, 5, 10]. The purpose of this paper is to construct an
implicit nonstandard finite difference scheme using nonlocal approximation of nonlin-
ear term, to be total variation diminishing (TVD). The computational complexity of
TVD implicit methods is significantly higher particularly when nonlinear functions are
involved. Our approach is to use the tool of the nonstandard finite difference method
in constructing TVD scheme which have the advantages of being computationally
simpler. In section 2, we give some preliminary setting and definitions including Roe
numerical flux [12], TVD and nonlocal approximations to be used in the rest of the
paper. Section 3 is devoted to the construction of new TVD method. In the section
4, some numerical experiments are given to confirm the validity of our new method.
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2. Preliminaries

Following a space discretization, Eq. (1.1) is written as a system of ODEs of the
form

Ut = L(U), (2.1)

where U = (Uj) and Uj(t) ≃ U(xj , t). We consider the case when the operator L

in (2.1) is obtained from special discretization using the Roe numerical flux. More
precisely, we have

f̂j+ 1
2
=

{

f(Uj), αj+ 1
2
≥ 0,

f(Uj+1), αj+ 1
2
< 0,

(2.2)

with

αj+ 1
2
=

f(Uj+1)− f(Uj)

Uj+1 − Uj

,

where we assume that the mesh in the space dimension is uniform with a step-size
∆x and

(L(U))j =
1

∆x
(f̂j− 1

2
− f̂j+ 1

2
). (2.3)

Let a mesh tn = n∆t, n = 0, 1, ..., in the time direction be given. As usual Un denotes
an approximation of U at t = tn. The total variation of Un is given by

TV (Un) =
∑

j

| Un
j+1 − Un

j | .

A numerical scheme is called TVD if TV (Un) is decreasing with respect to n [1, 11, 13],
i.e.,

TV (Un) ≥ TV (Un+1) n = 0, 1, 2, ... . (2.4)

The TVD property is more generally referred to as strong stability preserving (SSP)
or monotonicity when norms other that the total variation norm or even sublinear
functionals are considered [7].

3. Construction of the new scheme

We construct our numerical scheme for conservation laws using Roe numerical flux
and nonlocal approximation of nonlinear terms. The new implicit method is given by

Un+1
j =















Un
j − ∆t

∆x

(

f(Un
j )−f(Un

j−1)

Un
j
−Un

j−1

)

(Un+1
j − Un+1

j−1 ), if αj+ 1
2
≥ 0, αj− 1

2
≥ 0,

Un
j − ∆t

∆x

(

f(Un
j+1)−f(Un

j )

Un
j+1

−Un
j

)

(Un+1
j+1 − Un+1

j ), if αj+ 1
2
< 0, αj− 1

2
< 0.

(3.1)

The goal of using nonlocal approximation in the nonstandard discretization of L(U)
is to obtain a numerical scheme that preserve TVD property. This fact will be re-
flected in Theorem 1. The TVD property of numerical methods is often proved by
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using interesting research due to Harten [5]. Here we give a version dealing with the
implicit cases.

Lemma 1 (Harten).

If an implicit scheme can be written as

Un+1
j = Un

j + Cj+ 1
2
(Un+1

j+1 − Un+1
j )−Dj− 1

2
(Un+1

j + Un+1
j−1 ), (3.2)

with Cj+ 1
2
≥ 0, Dj− 1

2
≥ 0 then it is TVD.

Theorem 1. The scheme (3.1) is qualitatively stable with respect to the TVD prop-
erty (2.4) without any time step restriction.

Proof.

(i). When αj+ 1
2
≥ 0, the scheme can be represented in the form (3.2) with

Dj− 1
2
=

∆t

∆x

(f(Un
j )− f(Un

j−1)

Un
j − Un

j−1

)

,

Cj+ 1
2
= 0.

Using the definition of αj+ 1
2
, it can be easily seen that Dj− 1

2
≥ 0.

(ii). For αj+ 1
2
< 0, one can easily obtain that

Cj+ 1
2
= −

∆t

∆x

(f(Un
j+1)− f(Un

j )

Un
j+1 − Un

j

)

,

Dj− 1
2
= 0.

Hence it follows from Lemma 1 that the scheme (3.1) is TVD. �

Remark 1. Since the scheme (3.1) is TVD, The convergence follows from [8, The-
orem 15.2].

Remark 2. We have considered nonlocal approximation of the function L for de-
riving nonstandard TVD schemes for (2.1). The proposed method is of Euler type:

Un+1
j = Un

j +
∆t

∆x
(f̂j− 1

2
− f̂j+ 1

2
),

therefore it is of order one.

Remark 3. We should note that, in this paper, we have discussed a nonstandard
finite difference method, which is qualitatively stable with respect to the TVD prop-
erty. It has been shown that new scheme with such qualitative stability resolve discon-
tinuities in the solution without spurious oscillations. Furthermore, the new scheme
require no restriction on the time step-size.
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4. Numerical results

In this section we present some results of numerical computations using nonstan-
dard finite difference scheme proposed in the previous section. Here, we corroborate
the properties of new scheme for Burgers’ equation:

Ut +
(1

2
U2

)

x
= 0. (4.1)

It is well known that the entropy solution of this equation develops discontinuities
(shocks) even for smooth initial condition. To simplify the matters we take

U(x, 0) =

{

1.2, if − 1 ≤ x < 0,
0, if 0 ≤ x ≤ 1.

(4.2)

It was shown in [11, 7] that non-TVD methods typically produce oscillations around
the points of discontinuity. Figure 1 shows such oscillations produced by the standard
Euler method applied to problem (4.1)-(4.2). Also, Figure 2 shows the numerical
solution of the problem (4.1)-(4.2) by the new implicit scheme for ∆x = 0.2 with
different value ∆t. Our final time is taken as tf = 5. The solid line is the exact
solution U(x, t), the points joined by a dashed line are numerical solutions. We can
see that our scheme is able to produce an accurate solution by decreasing the step
sizes.

−1 0 1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

3

3.5

4

x

Figure 1. Numerical solution of the Burgers’ equation with initial
condition (4.2) given by the standard Euler method using Roe flux
with ∆x = ∆t = 0.2 and tf = 0.8.
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Figure 2. Numerical solution of the Burgers’ equation with initial
condition (4.2) given by the new scheme with ∆t = 1 (left), with
∆t = 0.5 (center), and ∆t = 0.2 (right).
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Figure 3. Numerical solution of the Burgers’ equation with initial
condition (4.3) given by the new scheme with ∆x = ∆t = 0.01 and
tf = 5.

The next numerical result of the new scheme is obtained for the Burger’s equation
with a square wave initial condition:

U(x, 0) =

{

1, if − 1 ≤| x |≤ 1
3 ,

0, if 1
3 <| x |≤ 1.

(4.3)

Figure 3 shows that our proposed scheme produces smooth and nonoscillatory solution
for ∆t = ∆x = 0.01 and tf = 5. The evolution of the total variation of Un is shown
in Figure 4, for the output times tf = T with T = 1, 2, ..., 5 revealing a decreasing.
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Figure 4. Values of TV (Un) for T = 1, 2, ..., 5.

5. Conclusion

In this paper, we constructed a new implicit nonstandard finite difference method
based on nonlocal approximation of nonlinear terms. In particular, the proposed
method uses Roe numerical flux. The power of our scheme over the standard one
is that it is reliable numerical simulation that preserve the linear stability and TVD
property of the exact solution. Our interest for future is to establish the positivity
property of proposed nonstandard method, since we have numerical evidence that
positivity ensured when the new scheme applied to positive systems.
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