- [1] Y. M. Agamawi, W. W. Hager, and A. V. Rao, Mesh refinement method for solving bang-bang optimal control problems using direct collocation, AIAA Scitech 2020 Forum, 1(Part F) (2020), 1–25.
- [2] V. Arakelian, Y. Lu, and J. Geng, Application of the “bang-bang” law in robot manipulators for the reduction of inertial forces and input torques, In the Mechanisms and Machine Science, Springer Nature, Switzerland, (2023), 149–158.
- [3] F. Assassa and W. Marquardt, Dynamic optimization using adaptive direct multiple shooting, Computers and Chemical Engineering, 60 (2014), 242–259.
- [4] M. Athans and P. L. Falb, Optimal Control: An Introduction to the Theory and Its Applications, Dover Publications, 2013.
- [5] D. Baleanu, A. Jajarmi, S. S. Sajjadi, and D. Mozyrska, A new fractional model and optimal control of a tumorimmune surveillance with non-singular derivative operator, Chaos: An Interdisciplinary Journal of Nonlinear Science, 29(8) (2019), 083127.
- [6] R. Baltensperger and M. R. Trummer, Spectral differencing with a twist, SIAM Journal on Scientific Computing, 24(5) (2003), 1465–1487.
- [7] D. A. Benson, G. T. Huntington, T. P. Thorvaldsen, and A. V. Rao, Direct trajectory optimization and costate estimation via an orthogonal collocation method, Journal of Guidance, Control, and Dynamics, 29(6) (2006), 1435–1440.
- [8] R. Bertrand and R. Epenoy, New smoothing techniques for solving bang-bang optimal control problems - numerical results and statistical interpretation, Optimal Control Applications and Methods, 23(4) (2002), 171–197.
- [9] J. T. Betts, Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, Society for Industrial and Applied Mathematics, second edition, 2010.
- [10] H. G. Bock and K. J. Plitt, Multiple shooting algorithm for direct solution of optimal control problems, IFAC Proceedings Volumes, 17(2) (1985), 1603–1608.
- [11] A. E. Bryson and Y. C. Ho, Applied Optimal Control: Optimization, Estimation, and Control, Taylor & Francis, 1975.
- [12] W. Cai, L. Yang, and Y. Zhu, Bang-bang optimal control for differentially flat systems using mapped pseudospectral method and analytic homotopic approach, Optimal Control Applications and Methods, 37(6) (2016), 1217–1235.
- [13] R. G. Deshmukh, D. A. Spencer, and S. Dutta, Investigation of direct force control for aerocapture at neptune, Acta Astronautica, 175 (2020), 375–386.
- [14] J. D. Eide, W. W. Hager, and A. V. Rao, Modified legendre–gauss–radau collocation method for optimal control problems with nonsmooth solutions, Journal of Optimization Theory and Applications, 191(2-3) (2021), 600–633.
- [15] G. Elnagar, M. A. Kazemi, and M. Razzaghi, The pseudospectral legendre method for discretizing optimal control problems, IEEE Transactions on Automatic Control, 40(10) (1995), 1793–1796.
- [16] P. J. Enright and B. A. Conway, Discrete approximations to optimal trajectories using direct transcription and nonlinear programming, Journal of Guidance, Control, and Dynamics, 15(4) (1992), 994–1002.
- [17] Z. Fathi and B. Bidabad, On the geometry of zermelo’s optimal control trajectories, AUT Journal of Mathematics and Computing, 3(1) (2022), 1–10.
- [18] B. Fornberg, A Practical Guide to Pseudospectral Methods, Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, 1996.
- [19] Z. Foroozandeh, M. Shamsi, V. Azhmyakov, and M. Shafiee, A modified pseudospectral method for solving trajectory optimization problems with singular arc, Mathematical Methods in the Applied Sciences, 40(5) (2017), 1783–1793.
- [20] Z. Foroozandeh, M. Shamsi, and M. D. R. De Pinho, A hybrid direct–indirect approach for solving the singular optimal control problems of finite and infinite order, Iranian Journal of Science and Technology, Transaction A: Science, 42(3) (2018), 1545–1554.
- [21] Z. Foroozandeh, M. Shamsi, and M. D. R. De Pinho, A mixed-binary non-linear programming approach for the numerical solution of a family of singular optimal control problems, International Journal of Control, 92(7) (2019), 1551–1566.
- [22] Z. Gao and H. Baoyin, Using homotopy method to solve bang-bang optimal control problems, Springer Optimization and Its Applications, 76 (2013), 243–256.
- [23] D. Garg, M. Patterson, W. W. Hager, A. V. Rao, D. A. Benson, and G. T. Huntington, A unified framework for the numerical solution of optimal control problems using pseudospectral methods, Automatica, 46(11) (2010), 1843–1851.
- [24] D. Garg, M. A. Patterson, C. Francolin, C. L. Darby, G. T. Huntington, W. W. Hager, and A. V. Rao, Direct trajectory optimization and costate estimation of finite-horizon and infinite-horizon optimal control problems using a radau pseudospectral method, Computational Optimization and Applications, 49(2) (2011), 335–358.
- [25] W. Gautschi, Orthogonal Polynomials: Computation and Approximation, Numerical Mathematics and Scientific Computation, OUP Oxford, 2004.
- [26] J. K. Geiser and D. A. Matz, Optimal angle of attack control for aerocapture maneuvers, AIAA Scitech 2022 Forum, (2022), 1–14.
- [27] M. Gerdts, Direct shooting method for the numerical solution of higher-index dae optimal control problems, Journal of Optimization Theory and Applications, 117(2) (2003), 267–294.
- [28] S. S. Haykin, Neural Networks and Learning Machines, Number v. 10 in Neural networks and learning machines, Prentice Hall, 2009.
- [29] J. C. C. Henriques, J. M. Lemos, L. Eca, L. M. C. Gato, and A. F. O. Falcao, A high-order discontinuous galerkin method with mesh refinement for optimal control problems, Automatica, 85 (2017), 70–82.
- [30] L. Hou-Yuan and Z. Chang-Yin, Optimization of low-thrust trajectories using an indirect shooting method without guesses of initial costates, Chinese Astronomy and Astrophysics, 36(4) (2012), 389–398.
- [31] N. Hritonenko, N. Kato, and Y. Yatsenko, Optimal control of investments in old and new capital under improving technology, Journal of Optimization Theory and Applications, 172(1) (2017), 247–266.
- [32] A. Jajarmi and M. Hajipour, An efficient finite difference method for the time-delay optimal control problems with time-varying delay, Asian Journal of Control, 19(2) (2017), 554–563.
- [33] A. Jajarmi, N. Pariz, A. Vahidian Kamyad, and S. Effati, A novel modal series representation approach to solve a class of nonlinear optimal control problems, International Journal of Innovative Computing, Information and Control, 7(2) (2011), 501–510.
- [34] R. Khanduzi, A. Ebrahimzadeh, and Z. Ebrahimzadeh, A combined bernoulli collocation method and imperialist competitive algorithm for optimal control of sediment in the dam reservoirs, AUT Journal of Mathematics and Computing, 5(1) (2024), 71–90.
- [35] D. Kim, Pricing strategies of monopoly platform for technology transition in a two-sided market, 2012 Proceedings of PICMET ’12: Technology Management for Emerging Technologies, (2012), 165–172.
- [36] D. E. Kirk, Optimal Control Theory: An Introduction, Dover Publications, 2004.
- [37] Q. Lin, R. Loxton, and K. L. Teo, The control parameterization method for nonlinear optimal control: A survey, Journal of Industrial and Management Optimization, 10(1) (2014), 275–309.
- [38] Z. Liu, S. Li, and K. Zhao, Extended multi-interval legendre-gauss-radau pseudospectral method for mixed-integer optimal control problem in engineering, International Journal of Systems Science, 52(5) (2021), 928–951.
- [39] D. J. Lynch, K. M. Lynch, and P. B. Umbanhowar, The soft-landing problem: Minimizing energy loss by a legged robot impacting yielding terrain, IEEE Robotics and Automation Letters, 5(2) (2020), 3658–3665.
- [40] M. Massaro, S. Lovato, M. Bottin, and G. Rosati, An optimal control approach to the minimum-time trajectory planning of robotic manipulators, Robotics, 12(3) (2023), 1–24.
- [41] H. Maurer, C. Buskens, J. H. R. Kim, and C. Y. Kaya, Optimization methods for the verification of second order sufficient conditions for bang-bang controls, Optimal Control Applications and Methods, 26(3) (2021), 129–156.
- [42] H. Maurer and N. P. Osmolovskii, Second order sufficient conditions for time-optimal bang-bang control, SIAM Journal on Control and Optimization, 42(6) (2004), 2239–2263.
- [43] M. A. Mehrpouya, M. Shamsi, and M. Razzaghi, A combined adaptive control parametrization and homotopy continuation technique for the numerical solution of bang-bang optimal control problems, ANZIAM Journal, 56(1) (2014), 48–65.
- [44] M. A. Mehrpouya, A modified pseudospectral method for indirect solving a class of switching optimal control problems, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 234(9) (2020), 1531–1542.
- [45] M. A. Mehrpouya and S. Fallahi, A modified control parametrization method for the numerical solution of bangbang optimal control problems, JVC/Journal of Vibration and Control, 21(12) (2015), 2407–2415.
- [46] M. A. Mehrpouya and M. Khaksar-E Oshagh, An efficient numerical solution for time switching optimal control problems, Computational Methods for Differential Equations, 9(1) (2021), 225–243.
- [47] E. R. Pager and A. V. Rao, Method for solving bang-bang and singular optimal control problems using adaptive radau collocation, Computational Optimization and Applications, 81(3) (2022), 857–887.
- [48] A. V. Rao, A survey of numerical methods for optimal control, Advances in the Astronautical Sciences, 135 (2009), 497–528.
- [49] I. M. Ross, A Primer on Pontryagin’s Principle in Optimal Control, Collegiate Publishers, 2015.
- [50] I. M. Ross and M. Karpenko, A review of pseudospectral optimal control: From theory to flight, Annual Reviews in Control, 36(2) (2012), 182–197.
- [51] M. Shamsi, A modified pseudospectral scheme for accurate solution of bang-bang optimal control problems, Optimal Control Applications and Methods, 32(6) (2011), 668–680.
- [52] C. Silva and E. Trelat, Smooth regularization of bang-bang optimal control problems, IEEE Transactions on Automatic Control, 55(11) (2010), 2488–2499.
- [53] X. Tang and J. Chen, Direct trajectory optimization and costate estimation of infinite-horizon optimal control problems using collocation at the flipped legendre-gauss-radau points, IEEE/CAA Journal of Automatica Sinica, 3(2) (2016), 174–183.
- [54] K. Wang, Z. Chen, Z. Wei, F. Lu, and J. Li, A new smoothing technique for bang-bang optimal control problems, AIAA Scitech 2024 Forum, (2024), 1–14.
- [55] J. A. C. Weideman and S. C. Reddy, A matlab differentiation matrix suite, ACM Transactions on Mathematical Software, 26(4) (2000), 465–519.
|