
تعداد نشریات | 45 |
تعداد شمارهها | 1,365 |
تعداد مقالات | 16,761 |
تعداد مشاهده مقاله | 54,022,960 |
تعداد دریافت فایل اصل مقاله | 16,736,246 |
A highly accurate numerical technique for solving variable-order fractional Burgers-Huxley equation | ||
Computational Methods for Differential Equations | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 05 اردیبهشت 1404 اصل مقاله (1.64 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22034/cmde.2025.63198.2820 | ||
نویسندگان | ||
Mojtaba Hajipour* ؛ Yashar Lakpour | ||
Department of Mathematics, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz, Iran. | ||
چکیده | ||
In this article, we present a highly accurate technique for the numerical solution of the variable-order time-fractional Burgers-Huxley equation. The original equation is first discretized in the temporal and spatial directions. The third-order weighted-shifted Gr\"{u}nwald and the fourth-order compact finite difference methods are used. We then formulate a nonlinear system of algebraic equations using the fully discretized version of the problem. The derived nonlinear system is solved by utilizing an iterative algorithm. The analysis of solvability, stability, and convergence of the method is also addressed. The method achieves a convergence rate of four in the spatial direction and three in the temporal direction. Moreover, it is a low-cost computational method and easy to implement. Finally, various illustrative examples are solved to verify the accuracy of the proposed method. | ||
کلیدواژهها | ||
Variable-order fractional derivative؛ Burgers-Huxley equation؛ highly accurate method | ||
آمار تعداد مشاهده مقاله: 19 تعداد دریافت فایل اصل مقاله: 47 |