- [1] C. M. Chang and H. K. Chen, Chaos and hybrid projective synchronization of commensurate and incommensurate fractional-order Chen-Lee systems, Nonlinear Dyn., 62 (2010), 851–858.
- [2] Y. Chen, C. Tang, and M. Roohi, Design of a model-free adaptive sliding mode control to synchronize chaotic fractional-order systems with input saturation: An application in secure communications, Journal of the Franklin Institute, (2021), 8109–8137.
- [3] N. Debbouche, A. Ouannas, S. Momani, D. Cafagno, and V. Pham, Fractional-order biological system: chaos, multistability and coexisting attractors, Eur. Phys. J. Spec. Top., 231 (2022), 1061–1070.
- [4] K. Diethelm, The Analysis of Fractional Differential Equations, Springer-Verlag, Berlin, 2010.
- [5] K. Diethelm, N. Ford, and A. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynam., 29(1) (2002), 3–22.
- [6] H. K. Khalil, Nonlinear system, Third ed., Prentice Hall, New Jersey, 2002.
- [7] M. Lin, Y. Hou, M. A. Al-Towailb, and H. Saberi-Nik, The global attractive sets and synchronization of a fractional-order complex dynamical system, AIMS Mathematics, 8(2) (2023), 3523–3541.
- [8] X. Liu, L. Hong, and L. Yang, Fractional–order complex T system: bifurcations, chaos control, and synchronization, Nonlinear Dyn., 75 (2014), 589–602.
- [9] H. Liu, Y. Pan, S. Li, and Y. Chen, Synchronization for fractional-order neural networks with full/under-actuation using fractional-order sliding mode control, International Journal of Machine Learning and Cybernetics, 9 (2018), 1219–1232.
- [10] H. Liu and J. Yang, Sliding-mode synchronization control for uncertain fractional-order chaotic systems with time delay, Entropy, 17 (2015), 4202–4214.
- [11] J. Liu, Z. Wang, M. Shu, F. Zhang, S. Leng, and X. Sun, Secure Communication of fractional complex chaotic systems based on fractional difference function synchronization, Complexity, 7242791 (2019), 1–10.
- [12] G. M. Mahmoud, M. Ahmed, and E. E. Mahmoud, Analysis of hyperchaotic Lorenz complex system, Int. J. Mod. Phys. C, 19(10) (2008), 1477–1494.
- [13] G. M. Mahmoud, E. E. Mahmoud, and M. E. Ahmed, On the hyperchaotic complex Lu system, Nonlinear Dyn., 58 (4) (2009), 725–738.
- [14] D. Matignon, Stability results for fractional differential equations with applications to control processing, In: IEEESMC proceedings of the computational engineering in systems and application multiconference, IMACS, Lille, France, 2 (1996), 963–968.
- [15] S. Mirzajani, M. P. Aghababa, and A. Heydari, Adaptive T-S fuzzy control design for fractional-order systems with parametric uncertainty and input constraint, Fuzzy Sets and Systems, 365 (2019), 22–39,
- [16] K. Rabah, S. Ladaci, and M. Lashab, A novel fractional sliding mode control configuration for synchronizing disturbed fractional-order chaotic systems, Pramana-J. Phys., 89(46) (2017), 1–13.
- [17] V. Vafaei, A. Jodayree Akbarfam, and H. Kheiri, A new synchronisation method of fractional-order chaotic systems with distinct orders and dimensions and its application in secure communication, International Journal of Systems Science, 52(16) (2021), 3437–3450.
- [18] V. Vafaei, H. Kheiri, and A. Jodayree Akbarfam, Synchronization of fractional-order chaotic systems with disturbances via novel fractionalinteger integral sliding mode control and application to neuron models, Math Meth Appl Sci., (2019), 1–13.
- [19] F. Zouaria, A. Boulkrouneb, and A. Ibeasc, Neural adaptive quantized output-feedback control-based synchronization of uncertain time-delay incommensurate fractional-order chaotic systems with input nonlinearities, Neurocomputing, 237 (2017), 200–225.
|