
تعداد نشریات | 45 |
تعداد شمارهها | 1,360 |
تعداد مقالات | 16,664 |
تعداد مشاهده مقاله | 53,909,466 |
تعداد دریافت فایل اصل مقاله | 16,534,104 |
Impact of nano-chelated NPK and chemical fertilizers on the growth and productivity features of maize (Zea mays L.) under water-deficit stress | ||
Journal of Plant Physiology and Breeding | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 11 دی 1403 اصل مقاله (676.61 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22034/jppb.2024.62666.1342 | ||
نویسندگان | ||
Esmaeil Gholinezhad* 1؛ Zahra Heidari Sureshjani2؛ Saideh Fakharzadeh2؛ Somayeh Kalanaky* 2 | ||
1Department of Agricultural Sciences, Payame Noor University, Tehran, Iran. | ||
2Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran. | ||
چکیده | ||
Objective: Drought stress is one of the most important factors limiting the development and production of maize worldwide. In this regard, using nano-fertilizers to control the release of nutrients can be a practical step towards achieving sustainable agriculture and environmental adaptation, and it is vital to induce drought stress tolerance in maize. Methods: We aimed to evaluate the effect of nano-chelating-based nitrogen and NPK fertilizers on both agronomic and physiological characteristics of maize under water-deficit stress conditions. A split-plot experiment was conducted based on a randomized complete block design to test the effect of the different fertilizers. The main plots included two levels of irrigation: optimum irrigation and water-deficit stress (irrigation after 140 mm evaporation from a Class A pan). The subplots involved various combinations of nano-chelated fertilizers at five doses, alongside a control using conventional chemical fertilizers. Results: Our results indicated that water-deficit stress adversely impacted various growth and productivity characteristics in maize. However, substituting conventional chemical fertilizers with nano-chelated fertilizers, even at a minimal level (10%), notably enhanced most studied traits compared to the control under water-deficit stress conditions. Specifically, treating plants with 222 kg/ha (Treatment 3 of the nano-chelated fertilizers (nano-chelated N20P20K20 96 kg/ha + nano-chelated nitrogen 126 L/ha) of nano-chelated fertilizers instead of 840 kg/ha of chemical fertilizers (300 kg/ha of triple superphosphate, 150 kg/ha of potassium sulfate, and 390 kg/ha of urea) resulted in a 33% increase in grain yield, overall improvements in yield components, and elevated nitrogen use efficiency under drought stress. Furthermore, nano-chelated fertilizers mitigated the impact of water-deficit stress through the chlorophyll a and b content while reducing leaf temperature. Conclusion: our results indicated that nano-chelating-based macronutrient fertilizers could present a promising avenue within sustainable production systems, particularly under water-deficit stress conditions. Therefore, considering production costs and environmental problems, the application of nano-chelated N20P20K20 96 kg/ha + nano-chelated nitrogen 126 L/ha for the sustainable production of grain yield in the Fajr cultivar of maize will be sufficient, and higher levels of nano-fertilizers will be luxurious. | ||
کلیدواژهها | ||
Harvest index؛ Nanotechnology؛ Nitrogen use efficiency؛ Water deficit؛ Yield | ||
مراجع | ||
Afzali S, Hosseini SMB, Ma'mani L, Ahmadi A. 2023. Effects of nano silica and salicylic acid on yield and yield components in maize (Zea mays L.)-mungbean (Vigna radiata L.) monocropping and intercropping under drought stress conditions. Iran J Field Crops Res. 21: 91-112 (In Persian with English abstract). https://doi.org/10.22067/jcesc.2022.78199.1194
Alzreejawi SAM, Al-Juthery HWA. 2020. Effect of spray with nano NPK, complete micro fertilizers and nano amino acids on some growth and yield indicators of maize (Zea mays L.). IOP Conference Series: Earth and Environmental Science, Volume 553, 1st Scientific International Virtual Agricultural Conference, 31 May- 1 June, Al-Qadisiyah, Iraq. https://doi.org/10.1088/1755-1315/553/1/012010
Amanullah, Iqbal A, Irfanullah, Hidayat Z. 2016. Potassium management for improving growth and grain yield of maize (Zea mays L.) under moisture stress condition. Sci Rep. 6: 34627. https://doi.org/10.1038/srep34627
Anjum SA, Ashraf U, Tanveer M, Khan I, Hussain S, Shahzad B, Zohaib A, Abbas F, Saleem MF, Ali I, et al. 2017. Drought tolerance in three maize cultivars is related to differential osmolyte accumulation, antioxidant defense system, and oxidative damage. Front Plant Sci. 8: 69. https://doi.org/10.3389/fpls.2017.00069
Arnon DI. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24(1): 1-15. https://doi.org/10.1104/pp.24.1.1
Astaneh N, Bazrafshan F, Zare M, Amiri B, Bahrini A. 2018. Effect of nano-chelated nitrogen and urea fertilizers on wheat plant under drought stress condition. Nativa. 6(6): 587-593. https://doi.org/10.31413/nativa.v6i6.6802
Bahrami-Rad S, Hajiboland R. 2017. Effect of potassium application in drought-stressed tobacco (Nicotiana rustica L.) plants: Comparison of root with foliar application. Ann Agric Sci. 62(2): 121-130. https://doi.org/10.1016/j.aoas.2017.08.001
Bai BZ, Yu SQ, Tian WX, Zhao JY. 1996. Plant physiology. Beijing, China: China Agricultural Science Press.
Bakhoum GSh, Amin GA, Sadak MSh. 2022. Biochemical study of some faba bean (Vicia faba L.) cultivars under different water regimes in sandy soil. Egypt J Chem. 65(132): 87-101. https://doi.org/10.21608/ejchem.2022.117184.5288
Bakhoum GSH, Tawfik MM, Kabesh MO, Sadak MSh. 2023. Potential role of algae extract as a natural stimulating for wheat production under reduced nitrogen fertilizer rates and water deficit. Biocatal Agric Biotechnol. 51: 102794. https://doi.org/10.1016/j.bcab.2023.102794
Bates LS, Waldren RP, Teare ID. 1973. Rapid determination of free proline for water-stress studies. Plant Soil. 39: 205-207. https://doi.org/10.1007/BF00018060
Bingham IJ, Karley AJ, White PJ, Thomas WTB, Russell JR. 2012. Analysis of improvements in nitrogen use efficiency associated with 75 years of spring barley breeding. Eur J Agron. 42: 49-58. https://doi.org/10.1016/j.eja.2011.10.003
Bodnár KB, Nasir Mousavi SM, Nagy J. 2018. Evaluation of dry matter accumulation of maize (Zea mays L.) hybrids. Acta Agraria Debreceniensis. 74: 35-41. https://doi.org/10.34101/actaagrar/74/1661
Chhipa, H. 2019. Applications of nanotechnology in agriculture. In: Gurtler V, Ball AS, Soni S (eds). Method Microbiol. 46: 115-142. Academic Press. https://doi.org/10.1016/bs.mim.2019.01.002
Costa-Filho E, Chávez JL, Comas L. 2020. Determining maize water stress through a remote sensing-based surface energy balance approach. Irrig Sci. 38: 501-518. https://doi.org/10.1007/s00271-020-00668-1
Danilevskaya ON, Yu G, Meng X, Xu J, Stephenson E, Estrada S, Chilakamarri S, Zastrow-Hayes G, Thatcher S. 2019. Developmental and transcriptional responses of maize to drought stress under field conditions. Plant Direct. 3(5): e00129. https://doi.org/10.1002/pld3.129
Dhopte AM, Livera-M M. 2002. Principles and techniques for plant scientist. India: Agrobios. 392 p.
Dias MC, Oliveira H, Costa A, Santos C. 2014. Improving elms performance under drought stress: The pretreatment with abscisic acid. Environ Exp Bot. 100: 64-73. https://doi.org/10.1016/j.envexpbot.2013.12.013
Diedrick K. 2010. Manganese fertility in soybean production. Crop Insights. 20(14): 1-4.
Ditta A, Arshad M. 2016. Applications and perspectives of using nanomaterials for sustainable plant nutrition. Nanotechnol Rev. 5(2): 209-229. https://doi.org/10.1515/ntrev-2015-0060
El-Bassiouny HMS, Abdallah MM, El-Enany MAM, Sadak MS. 2020. Nano-zinc oxide and Arbuscular mycorrhiza effects on physiological and biochemical aspects of wheat cultivars under saline conditions. Pak J Biol Sci. 23(4): 478-490. https://doi.org/10.3923/pjbs.2020.478.490
El-Bassiouny H, Sadak MS, Mahfouz S, El-Enany M, Elewa TA. 2023. Use of thiamine, pyridoxine and bio stimulant for better yield of wheat plants under water stress: Growth, osmoregulations, antioxidantive defence and protein pattern. Egypt J Chem. 66(4): 407-424. https://doi.org/10.21608/ejchem.2022.160140.6898
El Omari R, Ben Mrid R, Chibi F, Nhiri M. 2016. Involvement of phosphoenolpyruvate carboxylase and antioxydants enzymes in nitrogen nutrition tolerance in Sorghum bicolor plants. Russ J Plant Physiol. 63: 719-726. https://doi.org/10.1134/S102144371606008X
Eskandari H, Alizadeh Amraie A, Kazemi K. 2019. Effect of drought stress caused by partial root zone irrigation on water use efficiency and grain yield of maize (Zea mays L.) and mung bean (Vigna radiata L.) in different intercropping planting patterns. Environ Stresses Crop Sci. 12(1): 29-40 (In Persian with English abstract). https://doi.org/10.22077/escs.2018.1133.1233
Fakharzadeh S, Hafizi M, Baghaei MA, Etesami M, Khayamzadeh M, Kalanaky S, Akbari ME, Nazaran MH. 2020. Using nanochelating technology for biofortification and yield increase in rice. Sci Rep. 10: 4351. https://doi.org/10.1038/s41598-020-60189-x
Ghahremani A, Akbari K, Yousefpour M, Ardalani H. 2014. Effects of nano-potassium and nano-calcium chelated fertilizers on qualitative and quantitative characteristics of Ocimum basilicum. IJPRS. 3(2): 235-241.
Ghassemi A, Farzaneh S, Moharramnejad S. 2020. Impact of ascorbic acid on seed yield and its components in sweet corn (Zea mays L.) under drought stress. J Plant Physiol Breed. 10(1): 41-49. https://doi.org/10.22034/jppb.2020.12492
Ghassemi Golezani K, Mousavi SA. 2022. Improving physiological performance and grain yield of maize by salicylic acid treatment under drought stress. J Plant Physiol Breed. 12(2): 1-10. https://doi.org/10.22034/jppb.2022.16041
Hanafy RS, Sadak MS. 2023. Foliar spray of stigmasterol regulates physiological processes and antioxidant mechanisms to improve yield and quality of sunflower under drought stress. J Soil Sci Plant Nutr. 23: 2433-2450. https://doi.org/10.1007/s42729-023-01197-4
Hasanuzzaman M, Bhuyan MHMB, Nahar K, Hossain MS, Mahmud JA, Hossen MS, Masud AAC, Moumita, Fujita M. 2018. Potassium: A vital regulator of plant responses and tolerance to abiotic stresses. Agronomy. 8: 31. https://doi.org/10.3390/agronomy8030031
Hasanzade A, Ghajar Sepanlou M, Bahmanyar M. 2013. The effect of potassium and manure application on concentration of macro elements on wheat under water stresses. Agric Eng. 36(1): 77-85 (In Persian with English abstract).
Henry RJ, Rangan P, Furtado A. 2016. Functional cereals for production in new and variable climates. Curr Opin Plant Biol. 30: 11-18. https://doi.org/10.1016/j.pbi.2015.12.008
Hunter MC, Kemanian AR, Mortensen DA. 2021. Cover crop effects on maize drought stress and yield. Agric Ecosyst Environ. 311: 107294. https://doi.org/10.1016/j.agee.2020.107294
Jahan M, Kamayestani N, Ranjbar F. 2013. Assay for applying super absorbent polymer in a low input corn (Zea mays L.) production system aimed to reduce drought stress under Mashhad conditions. J Agroecol. 5(3): 272-281 (In Persian with English abstract). https://doi.org/10.22067/jag.v5i3.28999
Jose JV. 2023. Physiological and molecular aspects of macronutrient uptake by higher plants. In: Aftab T, Hakeem KR (eds.) Sustainable plant nutrition: Molecular interventions and advancements for crop improvement. Cambridge: Academic Press, pp. 1-21. https://doi.org/10.1016/B978-0-443-18675-2.00010-9
Kah M, Kookana RS, Gogos A, Bucheli TD. 2018. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat Nanotechnol. 13(8): 677-684. https://doi.org/10.1038/s41565-018-0131-1
Kang S, Shi W, Zhang J. 2000. An improved water-use efficiency for maize grown under regulated deficit irrigation. Field Crops Res. 67(3): 207-214. https://doi.org/10.1016/S0378-4290(00)00095-2
Karmollachaab A, Siadat SA, Hamdi H, Monjezi H, Kochakzadeh A. 2017. Effect of filter cake on physiological traits and ear yield of sweet corn under late drought stress condition. J Agroecol. 9(2): 421-432 (In Persian with English abstract). https://doi.org/2. 10.22067/jag.v9i2.43665
Khodarahmpour Z, Choukan R, Hosseinpour B. 2012. Multivariate analysis of some quantitative traits in maize inbred lines under heat stress condition. Crop Prod. 4(2): 31-50 (In Persian with English abstract).
Lalinia AA, Hoseini NM, Galostian M, Bahabadi SE, Khameneh MM. 2012. Echophysiological impact of water stress on growth and development of mungbean. Int J Agron Plant Prod. 3(12): 599-607.
Langridge P. 2013. Wheat genomics and the ambitious targets for future wheat production. Genome. 56(1)): 545-547. https://doi.org/10.1139/gen-2013-0149
Lichtenthaler HK. 1987. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymol. 148: 350-382. https://doi.org/10.1016/0076-6879(87)48036-1
Mir S, Sirousmehr A, Shirmohammadi E. 2015. Effect of nano and biological fertilizers on carbohydrate and chlorophyll content of forage sorghum (Speedfeed hybrid). Int J Biosci. 6: 157-164. https://doi.org/10.12692/ijb/6.4.157-164
Naghizadeh M, Kabiri R. 2017. Effect of foliar application of salicylic acid on some of physiological characteristics of corn (Zea mays L.) under drought stress conditions. Environ Stresses Crop Sci. 9: 315-327 (In Persian with English abstract). https://doi.org/10.22077/escs.2017.460
Nardini A, Grego F, Trifilò P, Salleo S. 2010. Changes of xylem sap ionic content and stem hydraulics in response to irradiance in Laurus nobilis. Tree Physiol. 30(5): 628-635. https://doi.org/10.1093/treephys/tpq017
Nasrollahzade V, Yusefi M, Ghasemi A, Bandehhagh A. 2018. Grain yield, yield components and relative water content in maize (Zea mays L.) under water deficit stress and two mycorrhizal fungi. J Agric Sci Sustain Prod. 27(4): 81-92.
Neisani S, Fallah S, Raiesi F. 2012. The effect of poultry manure and urea on agronomic characters of forage maize under drought stress conditions. J Agric Sci Sustain Prod. 21(4): 63-74.
Oddo E, Inzerillo S, La Bella F, Grisafi F, Salleo S, Nardini A, Goldstein G. 2011. Short-term effects of potassium fertilization on the hydraulic conductance of Laurus nobilis L. Tree Physiol. 31(2): 131-138. https://doi.org/10.1093/treephys/tpq115
Pettigrew WT. 2008. Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol Plant. 133(4): 670-681. https://doi.org/10.1111/j.1399-3054.2008.01073.x
Puntel LA, Sawyer JE, Barker DW, Dietzel R, Poffenbarger H, Castellano MJ, Moore KJ, Thorburn P, Archontoulis SV. 2016. Modeling long-term corn yield response to nitrogen rate and crop rotation. Front Plant Sci. 7: 1630. https://doi.org/10.3389/fpls.2016.01630
Rameshaiah G, Pallavi J, Shabnam S. 2015. Nano fertilizers and nano sensors–an attempt for developing smart agriculture. iJERGS. 3(1): 314-320. https://doi.org/10.3144/expresspolymlett.2010.6
Sadak MSh, Tawfik MM, Bakhoum GSh. 2022. Role of chitosan and chitosan-based nanoparticles on drought tolerance in plants: Probabilities and prospects. In: Kumar S, Madihally SV (eds.) Role of chitosan and chitosan-based nanomaterials in plant sciences, pp. 475-5001. https://doi.org/10.1016/B978-0-323-85391-0.00013-7
Sajedi NA, Madani H, Sajedi A. 2009. Effect of mycorrhiza and zinc on some agronomical traits and ear characteristics in maize KSC704 under drought stress. Proceedings of International Conference on Energy and Environment, March 19-21, Chandigar, India, pp. 711-715.
Sajedi NA, Sajedi A. 2009. Effect of drought stress, mycorrhiza and zinc rates on agro-physiologic characteristics of maize cv. KSC704. Iran J Crop Sci. 11(3): 202-222. (In Persian with English abstract).
Sarrafi S, Azari A, Saberi Riseh R, Mohammadi Mirik AA. 2017. Changes trend of physiological characteristics in maize as influenced by delaying irrigation and bacterial siderophore. J Crop Prod Proc. 7(2): 89-102. (In Persian with English abstract). https://doi.org/10.18869/acadpub.jcpp.7.2.89
Schussler JR, Westgate ME. 1991. Maize kernel set at low water potential: I. Sensitivity to reduced assimilates during early kernel growth. Crop Sci. 31(5): 1189-1195. https://doi.org/10.2135/cropsci1991.0011183X003100050023x
Senapati N, Stratonovitch P, Paul MJ, Semenov MA. 2019. Drought tolerance during reproductive development is important for increasing wheat yield potential under climate change in Europe. J Exp Bot. 70(9): 2549-2560. https://doi.org/10.1093/jxb/ery226
Shang Y, Hasan MK, Ahammed GJ, Li M, Yin H, Zhou J. 2019. Applications of nanotechnology in plant growth and crop protection: A review. Molecules. 24(14): 2558. https://doi.org/10.3390/molecules24142558
Soltani M, Azizi F, Chaeichi MR, Heidari Sharifabad H. 2012. Effect of irrigation regimes on some physiological, morphological and grain yield of new maize hybrids. Seed Plant Prod. 28(3): 347-362 (In Persian with English abstract). https://doi.org/10.22092/sppj.2017.110480
Tarafder C, Daizy M, Alam MdM, Ali MdR, Islam MdJ, Islam R, Ahommed Md S, Aly Saad Aly M, Khan MdZH. 2020. Formulation of a hybrid nanofertilizer for slow and sustainable release of micronutrients. ACS Omega. 5(37): 23960-23966. https://doi.org/10.1021/acsomega.0c03233
Tarighaleslami M, Kafi M, Nezami A, Zarghami R. 2017. Examining interactions of chilling and drought stresses on chlorophyll (SPAD), RWC, electrolyte leakage and seed performance in three hybrid varieties of maize. J Crop Breed. 9(23): 146-156. (In Persian with English abstract). https://doi.org/10.29252/jcb.9.23.146
Voronin PY, Maevskaya SN, Nikolaeva MK. 2019. Physiological and molecular responses of maize (Zea mays L.) plants to drought and rehydration. Photosynthetica. 57(3): 850-856. https://doi.org/10.32615/ps.2019.101
Wang M, Zheng Q, Shen Q, Guo S. 2013. The critical role of potassium in plant stress response. Int J Mol Sci. 14(4): 7370-7390. https://doi.org/10.3390/ijms14047370
Wang M, Gao L, Dong S, Sun Y, Shen Q, Guo S. 2017. Role of silicon on plant–pathogen interactions. Front Plant Sci. 8: 701. https://doi.org/10.3389/fpls.2017.00701
Ye T, Li Y, Zhang J, Hou W, Zhou W, Lu J, Xing Y, Li X. 2019. Nitrogen, phosphorus, and potassium fertilization affects the flowering time of rice (Oryza sativa L.). Glob Ecol Conserv. 20: e00753. https://doi.org/10.1016/j.gecco.2019.e00753
Younas HS, Abid M, Ashraf M, Shaaban M. 2022. Growth, yield and physiological characteristics of maize (Zea mays L.) at two different soil moisture regimes by supplying silicon and chitosan. Silicon. 14: 2509-2519. https://doi.org/10.1007/s12633-021-01033-3
Zahedifar M, Zohrabi S. 2016. Germination and seedling characteristics of drought-stressed corn seed as influenced by seed priming with potassium nano-chelate and sulfate fertilizers. Acta Agric Slov. 107(1): 113-128. https://doi.org/10.14720/aas.2016.107.1.12
Zahoor R, Dong H, Abid M, Zhao W, Wang Y, Zhou Z. 2017. Potassium fertilizer improves drought stress alleviation potential in cotton by enhancing photosynthesis and carbohydrate metabolism. Environ Exp Bot. 137: 73-83. https://doi.org/10.1016/j.envexpbot.2017.02.002
Zaky A, Obiadalla-Ali HA, El-Shaikh KAA, Marey RA. 2022. Effect of mineral (NPK) rates and injection with nano NPK on growth, yield and quality of onion. J Sohag Agrisci. 7(2): 60-76. https://doi.org/10.21608/jsasj.2022.284252
Zareabyaneh H, Bayatvarkeshi M. 2015. Effects of slow-release fertilizers on nitrate leaching, its distribution in soil profile, N-use efficiency, and yield in potato crop. Environ Earth Sci. 74: 3385-3393. https://doi.org/10.1007/s12665-015-4374-y
| ||
آمار تعداد مشاهده مقاله: 6 تعداد دریافت فایل اصل مقاله: 14 |