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Abstract

This paper presents new solutions to the nonlinear heat equation using the Exp-function method. The method
employs exponential form to construct diverse solution models, including one-soliton, two-soliton, hyperbolic,

and trigonometric soliton solutions. These solutions are crucial for modeling wave phenomena in studying the

stress of water surfaces. By utilizing exponential structures, the complexity of the equation is reduced, and
computational efficiency is enhanced. This approach offers a robust framework for solving higher-order nonlinear

partial differential equations and provides insights into the behavior of solitons in complex systems.
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1. Introduction

A proficient and extremely successful mathematical instrument for obtaining precise traveling wave solutions to
nonlinear evolution equations (NLEEs) that arise in science, engineering, and mathematical physics is the improved
Exp-function technique. The nonlinear heat equation uses the MSE approach to obtain precise solutions involving
parameters to NLEEs [5, 6, 16]. When the parameters obtain their particular values, the solitary wave solutions can
be obtained from the accurate traveling wave solutions [3, 15, 22]. This study extends the nonlinear heat equation
by incorporating available variables of the recently introduced time and space derivatives. We thoroughly analyze
the equation using the analytical approach and create various structures, including exponential, trigonometric, and
hyperbolic functions [18]. Solitons and periodic solutions for the fifth–order KdV equation using the EFM have been
investigated by Chun [7]. The Exp-function method along with Hirota’s and tanh-coth methods have been applied
for solving solitary wave solutions of the generalized shallow water wave equation by Wazwaz [33]. Wu et al. [35]
have applied the Exp-function method and its application to nonlinear equations. Analyze some recent papers with
application of the EFM and discuss the main deficiencies of this method is represented in [20]. Various techniques
have been employed to address the problem, each yielding only specific solutions. The primary objective of this
document is to derive the chemical equation using the improved Exp-function method and to present novel wave
solutions. The approaches that have been well recognized in recent works are homotopy analysis method [1, 10],
variational iteration method [17], Exp-function method [11], the Cauchy problem for matrix factorizations of the
Helmholtz equation [19], nonlinear eigenvalue problems [13], homotopy perturbation method [9], the Hirota’s bilinear
operator [32], boundary value problem for nonlinear first-order differential problems [29], F-expansion method [2],
Jacobi elliptic function method [8], tanh-function method [12] and so on. Nonlinear wave solutions of equations are
of great help to understanding nonlinear physical phenomena and analyzing the wave mechanism. High-dimensional
nonlinear partal differential equations (NLPDEs) pose greater complexity compared to the low-dimensional NLPDEs.
They typically manifest richer and more complex nonlinear behavior, and have great significance and wide application
in the field of mathematical physics. The exact or numerical solutions to these models, which explain phenomena
across various fields, have become an important area of research, leading to the development of numerous methods
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by scientists working in the field. Here, we investigate the analytical behavior of nonlinear heat model in two form of
(x, t) and (x, y, t).

In the following the nonlinear heat conduction equation [34] is mentioned in (x, t) as

ut − a(u3)xx − u+ u3 = 0, (1.1)

and is considered in (x, y, t) as

ut − a(u3)xx − a(u3)yy − u+ u3 = 0. (1.2)

The tanh approach was used to solve this problem and derive new solutions [34]. We present solutions for trigonometric
and elliptic functions and the hyperbolic ones obtained by Exp-function method. This method allows the simultaneous
derivation of three different sorts of solutions. The heat nonlinear partial differential equation can be solved using the
improved Exp-function approach to find new, more general closed-form wave solutions. This approach is among the
potent strategies that have emerged recently to establish more precise wave solutions to nonlinear partial differential
equations. We have obtained several new precise solutions, defined in terms of hyperbolic and trigonometric functions.
These solutions include soliton and periodic wave solutions with arbitrary parameters [23, 25–28]. This method is
particularly useful for obtaining exact soliton solutions, and its application to fractional models has provided deeper
insights into the parametric effects of wave behavior in neural systems. By leveraging the expansion method, this
study aims to explore new wave profiles of the chemical equation and analyze how different parameters, such as orders
and nonlinearity, influence the traveling behavior of solitons. In this work, we also focus on the impact of these
parameters on the stability and coherence of the resulting wave profiles, which could have significant applications for
understanding neural signaling in both healthy and diseased states. The study provides potential applications of the
obtained soliton solutions in various fields, including neuroscience, engineering, and applied mathematics. To fully
appreciate its physical significance, soliton solutions are highly valuable [14, 21, 24, 31].

The paper is managed as follows: In section 2, the Exp-function method is presented. In section 3, the results of
mentioned equation are obtained. In section 4, we investigate the nonlinear heat equation to (x, y, t) form. Moreover,
conclusion and advantages are pointed in section 5.

2. Exp–function method

Take the following nonlinear partial differential equation as

F1(Φ,Φt,Φx,Φxx,Φyy,Φtt,Φtx,Φty, ...) = 0, (2.1)

with

Φ(x, y, t) = u(Γ), Γ = x+ y − ct, (2.2)

where c is constant, therefore Eq. (2.1) transforms to

F2(Φ,−cΦ′,Φ′,Φ′′,Φ′′, ...) = 0. (2.3)

The Exp–function method [18] is introduced with the following function

Φ(Γ) =

∑a2

n=−a1
An exp(nΓ)∑b2

m=−b1
Bm exp(mΓ)

. (2.4)

We introduce a new variable or a series expansion to transform the original nonlinear differential equation into a
simpler form. Equate the highest-order nonlinear term with the highest-order derivative term to establish the solution’s
structure. But, the positive integer a2, b2 can be determined by considering the homogeneous balance between the
highest order derivatives and nonlinear terms appearing in Eq. (2.3). We substitute the assumed solution into the
transformed equation. Then, we determine the coefficients in the assumed solution by solving the resulting system
of algebraic equations. Substituting the determined coefficients back into the assumed solution, we acquire the exact
solution of the unique equation.
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(a) (b)

(c) (d)

Figure 1. The solitary solution (a)u1a, (b) u1b, (c)u1c and (d) u1d, position at a = 1 Eqs. (3.18)-(3.21).

3. The heat equation to (x, t)

This section will construct the test function by giving a model consisting one space and time below

Φt − s1(Φ
3)xx − Φ+Ψ3 = 0, (3.1)

by Γ = µ(x− ct) transforms to the following

−cµΦ′ − s1µ
2(Φ3)′′ − Φ+ Φ3 = 0, (3.2)

and take

Φ(x, t) = v−
1
2 (x, t), (3.3)
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(a) (b)

(c) (d)

Figure 2. The solitary solution (a)u1a and (b) u1b, (c)u1c and (d) u1d, position at a = 2 Eqs. (3.18)-(3.21).

into Eq. (3.2) to get

2cµv2v′ + 6s1µ
2vv′′ − 15s1µ

2(v′)2 − v3 + v2 = 0. (3.4)

To find the amounts of a1 and b1, we balance vv′′ with v2v′ in Eq. (3.4) as

vv′′ =
a11 exp((2a1 + 3b1)Γ) + ...

a12 exp(5b1Γ) + ...
, (3.5)

v2v′ =
a13 exp((3a1 + b1)Γ) + ...

a14 exp(4b1Γ) + ...
=

a13 exp((3a1 + 2b1)Γ) + ...

a14 exp(5b1Γ) + ...
, (3.6)
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respectively. Balancing highest order of the EFM in Eqs. (3.5) and (3.6), we obtain

2a1 + 3b1 = 3a1 + 2b1 ⇒ a1 = b1. (3.7)

To find the amounts of a2 and b2, to vv′′ and v2v′ in Eq. (3.2), we acquire

vv′′ =
...+ a21 exp(−(2a2 + 3b2)Γ)

...+ a22 exp(−5b2Γ)
, (3.8)

v2v′ =
...+ a23 exp(−(3a2 + b2)Γ)

...+ a24 exp(−4b2Γ)
=

...+ a23 exp(−(3a2 + 2b2)Γ)

...+ a24 exp(−5b2Γ)
. (3.9)

Balancing lowest order of the EFM in Eqs. (3.8) and (3.9), we get

−(2a2 + 3b2) = −(3a2 + 2b2) ⇒ a2 = b2. (3.10)

Type I: a2 = a1 = 1 and b2 = b1 = 1.

We set B1 = 1, a2 = a1 = 1 and b2 = b1 = 1. Then Eq. (2.4) transforms to

v(Γ) =
A1 exp(Γ) +A0 +A−1 exp(−Γ)

exp(Γ) +B0 +B−1 exp(−Γ)
. (3.11)

Appending (3.11) into Eq. (3.4), and using the well-known Maple software, one gets

1

λ
[G4 exp(4Γ) +G3 exp(3Γ) +G2 exp(2Γ) +G1 exp(Γ) +G0 +G−1 exp(−Γ)

+G−2 exp(−2Γ) +G−3 exp(−3Γ) +G−4 exp(−4Γ)] = 0, (3.12)

where

λ =
[
B−1 exp(−Γ) +B0 + exp(Γ)

]4
, (3.13)

and Gn are coefficients of exp(nχ). Equating the coefficients of exp(nΓ) to be zero, we obtain the parameters
A1,A0,A−1,B0,B−1, µ and c, as G4 = 0, G3 = 0, G2 = 0, G1 = 0,

G0 = 0,
G−4 = 0, G−3 = 0, G−2 = 0, G−1 = 0.

(3.14)

Solving the above sets and by utilizing the well-known Maple software, we achieve the following sets of non-trivial
solutions:

Type 1-1:

A−1 = 0, A1 = B−1 = 0, B0 = A0, A0 = A0, µ = ± 2

3
√
s1

, c = ±
√
s1, (3.15)

v1(x, t) =
A0

A0 + exp
[
± 2

3
√
s1

(
x∓√

s1t
)] . (3.16)

Recalling that Φ = v−
1
2 and using Eq. (3.16) we have

Φ1(x, t) =

 A0

A0 + exp
[
± 2

3
√
s1

(
x∓√

s1t
)]


− 1

2

. (3.17)

If we choose A0 = 1 and A0 = −1, then the solution Eq. (3.17) respectively give (cf. Eqs. (54)–(57) in [34])

Φ1a(x, t) =

{
1

2
− 1

2
tanh

[
1

3
√
s1

(x−
√
s1t)

]}− 1
2

, s1 > 0, (3.18)
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Φ1b(x, t) =

{
1

2
− 1

2
coth

[
1

3
√
s1

(x−
√
s1t)

]}− 1
2

, s1 > 0, (3.19)

and

Φ1c(x, t) =

{
1

2
+

1

2
tanh

[
1

3
√
s1

(x+
√
s1t)

]}− 1
2

, s1 > 0, (3.20)

Φ1d(x, t) =

{
1

2
+

1

2
coth

[
1

3
√
s1

(x+
√
s1t)

]}− 1
2

, s1 > 0, (3.21)

where obtained solutions by EFM are like with obtained solutions by tanh method in [34]. Also, by considering the
above cases we can find the periodic form of solutions as below:

Φ1e(x, t) =

{
1

2
+

i

2
tan

[
i

3
√
s1

(x−
√
s1t)

]}− 1
2

, s1 > 0, (3.22)

Φ1f (x, t) =

{
1

2
− i

2
cot

[
i

3
√
s1

(x−
√
s1t)

]}− 1
2

, s1 > 0, (3.23)

and

Φ1g(x, t) =

{
1

2
− i

2
tan

[
i

3
√
s1

(x+
√
s1t)

]}− 1
2

, s1 > 0, (3.24)

Φ1h(x, t) =

{
1

2
+

i

2
cot

[
1

3
√
s1

(x+
√
s1t)

]}− 1
2

, s1 > 0. (3.25)

Case II: b1 = a1 = 2 and b2 = a2 = 1.

Here, we set B2 = 1, b1 = a1 = 2 and b2 = a2 = 1. Then Eq. (2.4) transforms to

v(Γ) =
A2 exp(2Γ) +A1 exp(Γ) +A0 +A−1 exp(−Γ)

exp(2Γ) +B1 exp(Γ) +B0 +B−1 exp(−Γ)
. (3.26)

Putting (3.26) into Eq. (3.2), we acquire

1

λ
[G8 exp(8Γ) +G7 exp(7Γ) +G6 exp(6Γ) +G5 exp(5Γ) +G4 exp(4Γ)

+G3 exp(3Γ) +G2 exp(2Γ) +G1 exp(Γ) +G0 +G−1 exp(−Γ) +G−2 exp(−2Γ) (3.27)

+G−3 exp(−3Γ) +G−3 exp(−3Γ) +G−4 exp(−4Γ)] = 0,

where

λ = [B−1 exp(−Γ) +B0 +B1 exp(Γ) + exp(2Γ)]4, (3.28)

and Gn are coefficients of exp(nΓ). Equating the coefficients of exp(nΓ) to be zero, we acquire the parameters
A1,A0,A−1,B1,B0,B−1, µ and c, as G8 = 0, G7 = 0, G6 = 0, G5 = 0, G4 = 0, G3 = 0, G2 = 0, G1 = 0,

G0 = 0,
G−4 = 0, G−3 = 0, G−2 = 0, G−1 = 0.

(3.29)

Solving the above system, we obtain the following results
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Type 1-2:

B1 = A1 = 0 = B−1 = B0 = A0 = A2 = 0, A−1 = A−1, µ = ± 2

9
√
s1

, (3.30)

c = ∓3
√
s1, v1(x, t) = A−1exp

[
∓ 2

3
√
s1

(x± 3
√
s1t)

]
.

Noting that Φ = v−
1
2 and using Eq. (3.30) we have

Φ1(x, t) =
1√
A−1

exp

[
± 1

3
√
s1

(x± 3
√
s1t)

]
. (3.31)

If we choose A−1 = 1, then the solution Eq. (3.31) give

Φ1a(x, t) = cosh

[
1

3
√
s1

(x + 3
√
s1t)

]
+ sinh

[
1

3
√
s1

(x + 3
√
s1t)

]
, s1 > 0, (3.32)

or

Φ1b(x, t) = cosh

[
1

3
√
s1

(x− 3
√
s1t)

]
− sinh

[
1

3
√
s1

(x− 3
√
s1t)

]
, s1 > 0. (3.33)

Also, by considering the above cases we can find the periodic form of solutions as below:

Φ1c(x, t) = cos

[
i

3
√
s1

(x + 3
√
s1t)

]
ı sin

[
i

3
√
s1

(x + 3
√
s1t)

]
, s1 > 0, (3.34)

or

Φ1d(x, t) = cos

[
i

3
√
s1

(x− 3
√
s1t)

]
+ i sin

[
i

3
√
s1

(x− 3
√
s1t)

]
, s1 > 0. (3.35)

4. The heat equation to (x, y, t)

Take the nonlinear heat equation [34] as

Φt − s1(Φ
3)xx − s1(Φ

3)yy − Φ+ Φ3 = 0, (4.1)

using Γ = µ(x + y − ct), the above equation is transformed to

−cµΦ′ − 2s1µ
2(Φ3)′′ − Φ+ Φ3 = 0, (4.2)

we substitute

Φ(x, y, t) = v−
1
2 (x, y, t), (4.3)

into Eq. (4.2) to get

2cµv2v′ + 12s1µ
2vv′′ − 30s1µ

2(v′)2 − v3 + v2 = 0. (4.4)

To find the amounts of a1 and b1, we balance vv′′ with v2v′ in Eq. (4.4), as

vv′′ =
a11 exp((2a1 + 3b1)Γ) + ...

a12 exp(5b1Γ) + ...
, (4.5)

v2v′ =
a13 exp((3a1 + b1)Γ) + ...

a14 exp(4b1Γ) + ...
=

a13 exp((3a1 + 2b1)Γ) + ...

a14 exp(5b1Γ) + ...
. (4.6)

Balancing Eqs. (4.5) and (4.6), we find

2a1 + 3b1 = 3a1 + 2b1 ⇒ a1 = b1. (4.7)

To find the amounts of a2 and b2, to vv′′ and v2v′ in Eq. (4.2), we acquire

vv′′ =
...+ a21 exp(−(2a2 + 3b2)Γ)

...+ a22 exp(−5b2Γ)
, (4.8)
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Figure 3. The evolution from t = 0.001 to t = 3 when a = 2 and y = 10 for u1a and t = 1 to t = 9
when a = 2 and y = 5 for u1b Eqs. (4.18) and (4.19).

v2v′ =
...+ a23 exp(−(3a2 + b2)Γ)

...+ a24 exp(−4b2Γ)
=

...+ a23 exp(−(3a2 + 2b2)Γ)

...+ a24 exp(−5b2Γ)
. (4.9)

Balancing lowest order of the EFM in Eqs. (4.8) and (4.9), we get

−(2a2 + 3b2) = −(3a2 + 2b2) ⇒ a2 = b2. (4.10)

Case I: a1 = b1 = 1 and a2 = b2 = 1.

For simplicity, we set B1 = 1, a1 = b1 = 1 and a2 = b2 = 1. Then Eq. (2.4) reduces to

v(Γ) =
A1 exp(Γ) + A0 +A−1 exp(−Γ)

exp(Γ) + B0 +B−1 exp(−Γ)
. (4.11)
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Appending (4.11) into Eq. (4.4), and using the well-known Maple software, one gets

1

λ
[G4 exp(4Γ) +G3 exp(3Γ) +G2 exp(2Γ) +G1 exp(Γ) +G0 +G−1 exp(−Γ)

+G−2 exp(−2Γ) +G−3 exp(−3Γ) +G−4 exp(−4Γ)] = 0, (4.12)

where

λ =
[
B−1 exp(−Γ) +B0 + exp(Γ)

]4
, (4.13)

and Gn are coefficients of exp(nΓ). Equating the coefficients of exp(nχ) to be zero, we obtain the parameters
A1,A0,A−1,B0,B−1, µ and c, as

G4 = 0, G3 = 0, G2 = 0, G1 = 0,

G0 = 0,

G−4 = 0, G−3 = 0, G−2 = 0, G−1 = 0.

(4.14)

Solving the above sets and by utilizing the well-known Maple software, we achieve the following sets of non-trivial
solutions:

Type 2-1:

A−1 = A1 = B−1 = 0, B0 = a0, A0 = A0, µ = ± 2

3
√
2s1

, c = ±
√
2s1, (4.15)

v1(x, y, t) =
A0

A0 + exp
[
± 2

3
√
2s1

(
x + y ∓

√
2s1t

)] . (4.16)

Recalling that Φ = v−
1
2 and using Eq. (4.16) we have

Φ1(x, y, t) =

 A0

A0 + exp
[
± 2

3
√
2s1

(
x + y ∓

√
2s1t

)]


− 1
2

. (4.17)

If we choose A0 = 1 and A0 = −1, then the solution Eq. (4.17) respectively give

Φ1a(x, y, t) =

{
1

2
− 1

2
tanh

[
1

3
√
2s1

(
x + y −

√
2s1t

)]}− 1
2

, s1 > 0, (4.18)

Φ1b(x, y, t) =

{
1

2
− 1

2
coth

[
1

3
√
2s1

(
x + y −

√
2s1t

)]}− 1
2

, s1 > 0, (4.19)

and

Φ1c(x, y, t) =

{
1

2
+

1

2
tanh

[
1

3
√
2s1

(
x + y +

√
2s1t

)]}− 1
2

, s1 > 0, (4.20)

Φ1d(x, y, t) =

{
1

2
+

1

2
coth

[
1

3
√
2s1

(
x + y +

√
2s1t

)]}− 1
2

, s1 > 0. (4.21)

Also, by considering the above cases we can find the periodic form of solutions as below:

Φ1a(x, y, t) =

{
1

2
+

i

2
tan

[
i

3
√
2s1

(
x + y −

√
2s1t

)]}− 1
2

, s1 > 0, (4.22)

Φ1b(x, y, t) =

{
1

2
− i

2
cot

[
i

3
√
2s1

(
x + y −

√
2s1t

)]}− 1
2

, s1 > 0, (4.23)
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Figure 4. The evolution from t = 0.001 to t = 3 when a = 2 and y = 10 for u1c and t = 1 to t = 9
when a = 2 and y = 5 for u1d Eqs. (4.20) and (4.21).

and

Φ1c(x, y, t) =

{
1

2
− i

2
tan

[
i

3
√
2s1

(
x + y +

√
2s1t

)]}− 1
2

, s1 > 0, (4.24)

Φ1d(x, y, t) =

{
1

2
+

i

2
cot

[
i

3
√
2s1

(
x + y +

√
2s1t

)]}− 1
2

, s1 > 0. (4.25)

Case II: a1 = b1 = 2 and a2 = b2 = 1.

We set A2 = 1, a1 = b1 = 2 and a2 = b2 = 1. Then, Eq. (2.4) gives the following

Φ(Γ) =
A2 exp(2Γ) + A1 exp(Γ) + A0 +A−1 exp(−Γ)

exp(2Γ) + b1 exp(Γ) + B0 +B−1 exp(−Γ)
. (4.26)
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Putting (4.26) into Eq. (4.2), we acquire

1

λ
[G8 exp(8Γ) +G7 exp(7Γ) +G6 exp(6Γ) +G5 exp(5Γ) +G4 exp(4Γ)

+G3 exp(3Γ) +G2 exp(2Γ) +G1 exp(Γ) +G0 +G−1 exp(−Γ) +G−2 exp(−2Γ)

+G−3 exp(−3Γ) +G−3 exp(−3Γ) +G−4 exp(−4Γ)] = 0, (4.27)

where

λ = [B−1 exp(−Γ) +B0 +B1 exp(Γ) + exp(2Γ)]4, (4.28)

and Gn are coefficients of exp(nχ). Equating the coefficients of exp(nχ) to be zero, we acquire the parameters
A1,A0,A−1,B1,B0,B−1, µ and c, as

G8 = 0, G7 = 0, G6 = 0, G5 = 0, G4 = 0, G3 = 0, G2 = 0, G1 = 0,

G0 = 0,

G−4 = 0, G−3 = 0, G−2 = 0, G−1 = 0.

(4.29)

Solving the above system, we obtain the following results

Type 2-2:

B1 = B−1 = A1 = A0 = A2 = B0 = 0, A−1 = A−1, µ = ± 2

9
√
2s1

, (4.30)

c = ∓3
√
2s1, v1(x, y, t) = A−1exp

[
∓ 2

3
√
2s1

(
x+ y ± 3

√
2s1t

)]
.

Noting that Φ = v−
1
2 and using Eq. (4.30) we have

Φ1(x, y, t) =
1√
A−1

exp

[
± 1

3
√
2s1

(
x + y ± 3

√
2s1t

)]
. (4.31)

If we choose A−1 = 1, then the solution Eq. (4.31) give

Φ1a(x, y, t) = cosh

[
1

3
√
2s1

(
x+ y + 3

√
2s1t

)]
+ sinh

[
1

3
√
2s1

(
x+ y + 3

√
2s1t

)]
, s1 > 0, (4.32)

or

Φ1b(x, y, t) = cosh

[
1

3
√
2s1

(
x+ y − 3

√
2s1t

)]
− sinh

[
1

3
√
2s1

(
x+ y − 3

√
2s1t

)]
, s1 > 0. (4.33)

Also, by considering the above cases we can find the periodic form of solutions as below:

Φ1a(x, y, t) = cos

[
i

3
√
2s1

(
x+ y + 3

√
2s1t

)]
− i sin

[
i

3
√
2s1

(
x+ y + 3

√
2s1t

)]
, s1 > 0, (4.34)

or

Φ1b(x, y, t) = cos

[
i

3
√
2s1

(
x+ y − 3

√
2s1t

)]
+ i sin

[
i

3
√
2s1

(
x+ y − 3

√
2s1t

)]
, s1 > 0. (4.35)

While the Exp-function approach has proven effective in solving the heat nonlinear equation, it is not without limita-
tions. One notable limitation is the reliance on specific parameter values for constructing exact solutions. The method
may face challenges when generalized to other types of nonlinear equations or when the solution space involves more
complex boundary conditions. The effectiveness of this method also hinges on the precise tuning of the related pa-
rameters, which can be time-consuming and require domain expertise. Furthermore, the method is currently limited
to specific types of soliton solutions, and its application to other forms of nonlinear waves remains an area for future
exploration. Despite these limitations, the Exp-function method opens up new avenues for solving nonlinear differen-
tial equations in a more structured and efficient way, especially when combined with other numerical techniques. For
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this purpose, at the different time, the surface graphics of the exact solutions are plotted in Figs. (1)-(4). One can
see that the exact solutions obtained by EFM are quite accurate.

5. Conclusion

This study successfully demonstrates the application of the Exp-function approach to the nonlinear heat equation,
providing various soliton solutions, including one-soliton, two-soliton, hyperbolic, and trigonometric solutions. Using
rational expansion form in conjunction with exponential techniques simplifies the process of solving complex nonlinear
partial differential equations, enhancing both solution accuracy and computational efficiency. Despite some limitations,
this method represents a significant advancement in the study of nonlinear wave equations, offering a promising
approach for future research on higher-order nonlinear systems. For the obtained soliton solutions, we have carried
out theoretical and graphical analysis, showing that it holds a certain morphological oscillation in the process of time
evolution, and analyzing the physical characteristics of velocity and direction. These results may help to understand
the variety of the dynamic behavior of higher-dimensional nonlinear wave field. Given the versatility of the nonlinear
problems, future research could explore applications across fields such as engineering, physics, and applied mathematics,
further extending the impact of this study beyond nonlinear heat model.
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