
تعداد نشریات | 44 |
تعداد شمارهها | 1,341 |
تعداد مقالات | 16,473 |
تعداد مشاهده مقاله | 53,507,489 |
تعداد دریافت فایل اصل مقاله | 16,027,144 |
مدلسازی و بهینهسازی سامانه تجدیدپذیر ترکیبی خورشیدی - بادی برای تولید الکتریسیته مزارع فریدون شهر | ||
نشریه مکانیزاسیون کشاورزی | ||
دوره 10، شماره 1، فروردین 1404، صفحه 71-83 اصل مقاله (1.44 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/jam.2025.65536.1313 | ||
نویسندگان | ||
مهران موحدی؛ اسداله اکرم* ؛ مجید خانعلی | ||
گروه مهندسی ماشینهای کشاورزی، دانشکده کشاورزی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران | ||
چکیده | ||
بخش کشاورزی بهعنوان یکی از پرمصرفترین بخشها از نظر انرژی، نقشی حیاتی در تأمین امنیت غذایی دارد. با افزایش تقاضای جهانی برای انرژی و تشدید نگرانیهای محیطزیستی، ضرورت استفاده از منابع تجدیدپذیر در این حوزه بیشازپیش احساس میشود. با اینحال، هزینههای اولیه بالا و ناپایداری تولید، موانعی جدی برای توسعه این فناوریها ایجاد کرده است. این پژوهش با هدف شناسایی راهکارهای فنی و اقتصادی برای تأمین انرژی پایدار در کشاورزی، به بررسی سناریوهای مختلف تولید انرژی تجدیدپذیر در یک مزرعه ۵۰ هکتاری واقع در شهرستان فریدونشهر، استان اصفهان پرداخته است. برای این منظور، شش سناریوی مبتنی بر ترکیب انرژیهای خورشیدی و بادی طراحی و با استفاده از نرمافزار هومر شبیهسازی و بهینهسازی شدند. نتایج نشان داد که سناریو 5 که شامل ترکیب انرژیهای تجدیدپذیر خورشیدی و بادی، متصل به شبکه سراسری، با امکان فروش انرژی مازاد به شبکه و بدون استفاده از ژنراتورهای سوخت فسیلی است، با تولید 99/462 مگاواتساعت انرژی و مشارکت 58 درصدی منابع تجدیدپذیر، بهترین گزینه میباشد. این سناریو با هزینه انرژی 022/0 دلار به ازای هر کیلوواتساعت، از نظر اقتصادی بهصرفهترین گزینه محسوب میشود. این پژوهش با تأکید بر ضرورت توسعه زیرساختهای ذخیرهسازی و ارتقای فناوریهای تولید انرژی، نشان میدهد که استفاده از سامانههای ترکیبی تجدیدپذیر میتواند گامی اساسی در کاهش وابستگی به سوختهای فسیلی و تحقق کشاورزی پایدار باشد. | ||
کلیدواژهها | ||
انرژیهای تجدیدپذیر؛ تحلیل فنی و اقتصادی؛ سامانههای ترکیبی؛ کشاورزی پایدار | ||
مراجع | ||
Adefarati, T., & Bansal, R. C. (2019). Application of renewable energy resources in a microgrid power system. The Journal of Engineering, 2019(18), 5308-5313. https://doi.org/10.1049/joe.2018.9261. Amutha, W. M., & Rajini, V. (2015). Techno-economic evaluation of various hybrid power systems for rural telecom. Renewable and Sustainable Energy Reviews, 43, 553-561. https://doi.org/10.1016/j.rser.2014.10.103. Colmenar-Santos, A., Palomo-Torrejón, E., Mur-Pérez, F., & Rosales-Asensio, E. (2020). Thermal desalination potential with parabolic trough collectors and geothermal energy in the Spanish southeast. Applied Energy, 262, 114433. https://doi.org/10.1016/j.apenergy.2019.114433. Das, B. K., Alotaibi, M. A., Das, P., Islam, M. S., Das, S. K., & Hossain, M. A. (2021). Feasibility and techno-economic analysis of stand-alone and grid-connected PV/Wind/Diesel/Batt hybrid energy system: A case study. Energy Strategy Reviews, 37, 100673. https://doi.org/10.1016/j.esr.2021.100673. Das, M., & Mandal, R. (2022). The effect of photovoltaic energy penetration on a Photovoltaic-Biomass-Lithium-ion off-grid system and system optimization for the agro-climatic zones of West Bengal. Sustainable Energy Technologies and Assessments, 53, 102593. https://doi.org/10.1016/j.seta.2022.102593. Deshmukh, M. K., & Deshmukh, S. S. (2008). Modeling of hybrid renewable energy systems. Renewable and sustainable energy reviews, 12(1), 235-249. https://doi.org/10.1016/j.rser.2006.07.011. Ding, Z., Hou, H., Yu, G., Hu, E., Duan, L., & Zhao, J. (2019). Performance analysis of a wind-solar hybrid power generation system. Energy Conversion and Management, 181, 223-234. https://doi.org/10.1016/j.enconman.2018.11.080. Elkadeem, M. R., Wang, S., Sharshir, S. W., & Atia, E. G. (2019). Feasibility analysis and techno-economic design of grid-isolated hybrid renewable energy system for electrification of agriculture and irrigation area: A case study in Dongola, Sudan. Energy Conversion and Management, 196, 1453–1478. https://doi.org/10.1016/j.enconman.2019.06.085. Elmahallawy, M., Elfouly, T., Alouani, A., & Massoud, A. M. (2022). A comprehensive review of lithium-ion batteries modeling, and state of health and remaining useful lifetime prediction. Ieee Access, 10, 119040-119070. https://doi.org/10.1109/ACCESS.2022.3221137. Emrani, A., & Berrada, A. (2024). Modeling and optimal capacity configuration of dry gravity energy storage integrated in off-grid hybrid PV/wind/biogas plant incorporating renewable power generation forecast. Journal of Energy Storage, 97, 112698. https://doi.org/10.1016/j.est.2024.112698. Fayazi, S., Zareei, S., Samimi-Akhijahani, H. and Maleki, M. R. (2024). Improving biogas production from fruit waste: using chemical, mechanical and thermal pretreatments and co-digestion with cow manure. Agricultural Mechanization, 9(1), 13-23. (In Persian). https://doi.org/10.22034/jam.2024.59881.1269. Garcia, A. V. M., Sánchez-Romero, F. J., López-Jiménez, P. A., & Pérez-Sánchez, M. (2022). A new optimization approach for the use of hybrid renewable systems in the search of the zero net energy consumption in water irrigation systems. Renewable Energy, 195, 853-871. https://doi.org/10.1016/j.renene.2022.06.060. Gandiglio, M., Marocco, P., Bianco, I., Lovera, D., Blengini, G. A., & Santarelli, M. (2022). Life cycle assessment of a renewable energy system with hydrogen-battery storage for a remote off-grid community. International Journal of Hydrogen Energy, 47(77), 32822-32834. https://doi.org/10.1016/j.ijhydene.2022.07.199. Giraud, F., & Salameh, Z. M. (2001). Steady-state performance of a grid-connected rooftop hybrid wind-photovoltaic power system with battery storage. IEEE transactions on energy conversion, 16(1), 1-7. https://doi.org/10.1109/60.911395. Goel, S., & Sharma, R. (2017). Performance evaluation of stand-alone, grid connected and hybrid renewable energy systems for rural application: A comparative review. Renewable and Sustainable Energy Reviews, 78, 1378-1389. https://doi.org/10.1016/j.rser.2017.05.200. Hassan, Q., Algburi, S., Sameen, A. Z., Salman, H. M., & Jaszczur, M. (2023). A review of hybrid renewable energy systems: Solar and wind-powered solutions: Challenges, opportunities, and policy implications. Results in Engineering, 101621. https://doi.org/10.1016/j.rineng.2023.101621. Jalalvand, M., Akram, A. and Khanali, M. (2024). Agricultural Mechanization Assessment in Boroujerd County by Mechanization Evaluation Indices. Agricultural Mechanization, 9(4), 71-88. (in Persian). https://doi.org/10.22034/jam.2024.62765.1285. Kapen, P. T., Nouadje, B. A. M., Chegnimonhan, V., Tchuen, G., & Tchinda, R. (2022). Techno-economic feasibility of a PV/battery/fuel cell/electrolyzer/biogas hybrid system for energy and hydrogen production in the far north region of cameroon by using HOMER pro. Energy Strategy Reviews, 44, 100988. https://doi.org/10.1016/j.esr.2022.100988. Khattak, S., Yousif, M., Hassan, S. U., Hassan, M., & Alghamdi, T. A. (2024). Techno-economic and environmental analysis of renewable energy integration in irrigation systems: A comparative study of standalone and grid-connected PV/diesel generator systems in Khyber Pakhtunkhwa. Heliyon, 10(10). https://doi.org/10.1016/j.heliyon.2024.e31025. Kebede, A. A., Coosemans, T., Messagie, M., Jemal, T., Behabtu, H. A., Van Mierlo, J., & Berecibar, M. (2021). Techno-economic analysis of lithium-ion and lead-acid batteries in stationary energy storage application. Journal of Energy Storage, 40, 102748. https://doi.org/10.1016/j.est.2021.102748. Kiehbadroudinezhad, M., Merabet, A., Rajabipour, A., Cada, M., Kiehbadroudinezhad, S., Khanali, M., & Hosseinzadeh-Bandbafha, H. (2022). Optimization of wind/solar energy microgrid by division algorithm considering human health and environmental impacts for power-water cogeneration. Energy Conversion and Management, 252, 115064. https://doi.org/10.1016/j.enconman.2021.115064. Lukatskaya, M. R., Dunn, B., & Gogotsi, Y. (2016). Multidimensional materials and device architectures for future hybrid energy storage. Nature communications, 7(1), 12647. https://doi.org/10.1038/ncomms12647. Manasseh, C. O., Logan, C. S., Okanya, O. C., Igwemeka, E., Odidi, O., Onoh, C. F., & Ejim, E. P. (2025). The Nexus between Electricity Generation and Agricultural Development in Africa. International Journal of Energy Economics and Policy, 15(1), 317-329. https://doi.org/10.32479/ijeep.14651. Manjula, A., Niraimathi, R., Rajarajeswari, M., & Devi, S. C. (2025). Grid integration of renewable energy sources: challenges and solutions. In Green Machine Learning and Big Data for Smart Grids. 263-286. https://doi.org/10.1016/B978-0-443-28951-4.000 20-4. Iran Ministry of Energy. (2023). Electricity consumption report in Iran, 2015-2023. Ministry of Energy of Iran. Retrieved February 17, 2024, from www.meo.gov.ir. Mottaghi, S., & Khob, A. R. (2023). Economic Comparison Between Solar Power and National Grid to Supply Energy for Drip Irrigation System: The Case Study of Pakdasht County. Water Resources, 16(56), 1-14. https://doi.org/10.30495/wej.2023.26045.2266. Nfaoui, M., & El-Hami, K. (2018). Extracting the maximum energy from solar panels. Energy Reports, 4, 536-545. https://doi.org/10.1016/j.egyr.2018.05.002. Padrón, I., Avila, D., Marichal, G. N., & Rodríguez, J. A. (2019). Assessment of Hybrid Renewable Energy Systems to supplied energy to Autonomous Desalination Systems in two islands of the Canary Archipelago. Renewable and Sustainable Energy Reviews, 101, 221-230. https://doi.org/10.1016/j.rser.2018.11.009. Razmjoo, A., Kaigutha, L. G., Rad, M. V., Marzband, M., Davarpanah, A., & Denai, M. J. R. E. (2021). A Technical analysis investigating energy sustainability utilizing reliable renewable energy sources to reduce CO2 emissions in a high potential area. Renewable Energy, 164, 46-57. https://doi.org/10.1016/j.renene.2020.09.042. Tahir, K. A., Zamorano, M., & García, J. O. (2023). Scientific mapping of optimisation applied to microgrids integrated with renewable energy systems. International Journal of Electrical Power & Energy Systems, 145, 108698. https://doi.org/10.1016/j.ijepes.2022.108698. Tari, M. K., Faraji, A. R., Aslani, A., & Zahedi, R. (2023). Energy simulation and life cycle assessment of a 3D printable building. Cleaner Materials, 7, 100168. https://doi.org/10.1016/j.clema.2023.100168. Vaziri Rad, M. A., Kasaeian, A., Mahian, O., & Toopshekan, A. (2024). Technical and economic evaluation of excess electricity level management beyond the optimum storage capacity for off-grid renewable systems. Journal of Energy Storage, 87, 111385. https://doi.org/10.1016/j.est.2024.111385. Vaziri Rad, M. A., Kasaeian, A., Niu, X., Zhang, K., & Mahian, O. (2023). Excess electricity problem in off-grid hybrid renewable energy systems: A comprehensive review from challenges to prevalent solutions. Renewable Energy, 212, 538–560. https://doi.org/10.1016/j.renene.2023.05.073. Zhou, W., Lou, C., Li, Z., Lu, L., & Yang, H. (2010). Current status of research on optimum sizing of stand-alone hybrid solar–wind power generation systems. Applied energy, 87(2), 380-389. https://doi.org/10.1016/j.apenergy.2009.08.012. | ||
آمار تعداد مشاهده مقاله: 26 تعداد دریافت فایل اصل مقاله: 26 |