
تعداد نشریات | 44 |
تعداد شمارهها | 1,341 |
تعداد مقالات | 16,475 |
تعداد مشاهده مقاله | 53,515,653 |
تعداد دریافت فایل اصل مقاله | 16,030,265 |
Numerical simulation of a nonlinear system of space-fractional Klein-Gordon-Zakharov equations using the Fourier spectral method | ||
Computational Methods for Differential Equations | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 20 اسفند 1403 اصل مقاله (11.09 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22034/cmde.2025.65052.2970 | ||
نویسندگان | ||
Zohreh Yaghoobloo1؛ Sedigheh Toubaei* 1؛ Mehdi Jalalvand2؛ Jafar Esmaily1؛ Safiyeh Mohammadian3 | ||
1Department of Mathematics, Ahvaz branch, Islamic Azad University, Ahvaz, Iran. | ||
2Department of Mathematics, Faculty of Mathematical Sciences and Computer, Shahid Chamran University of Ahvaz, Ahvaz, Iran. | ||
3Department of Mathematics, Osku Branch, Islamic Azad University, Osku, Iran. | ||
چکیده | ||
An accurate and efficient numerical approach for the nonlinear space-fractional Klein-Gordon-Zakharov (KGZ) system of equations incorporating the fractional Laplacian operator is proposed in this study. The method is designed to preserve both mass and energy, which is crucial for accurately solving such complex systems. The spatial discretization is carried out using the Fourier spectral method. In contrast, temporal discretization is achieved through the fourth-order exponential time-differencing Runge-kutta (ETDRK4) technique, ensuring both efficiency and stability. We prove the convergence of the proposed method, establishing a theoretical foundation for its application. To assess the efficiency and versatility of the proposed method, we report on a series of numerical simulations. The outcomes of these simulations are displayed in tables and graphs, illustrating the performance of the method regarding the approximation error, convergence order, and execution time for various fractional values. | ||
کلیدواژهها | ||
Nonlinear Klein-Gordon-Zakharov system؛ Space-fractional system؛ Laplacian operator of the fractional order؛ Fourier spectral method؛ Exponential Runge-kutta of the fourth-order | ||
آمار تعداد مشاهده مقاله: 16 تعداد دریافت فایل اصل مقاله: 23 |