
تعداد نشریات | 44 |
تعداد شمارهها | 1,353 |
تعداد مقالات | 16,536 |
تعداد مشاهده مقاله | 53,630,735 |
تعداد دریافت فایل اصل مقاله | 16,089,248 |
Numerical idea to solve three-dimensional nonlinear Volterra integral equations with 3D-Legendre polynomials | ||
Computational Methods for Differential Equations | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 20 اسفند 1403 اصل مقاله (12.04 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22034/cmde.2025.65630.3028 | ||
نویسندگان | ||
Jalil Manafian* ؛ Peyman Bolgar | ||
Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran. | ||
چکیده | ||
In this paper, a three-dimensional Legendre polynomial (3D-LPs) is used for solving the nonlinear three-dimensional Volterra integral equations (VIEs). Converting the main problem to a nonlinear algebraic system using 3D-LPs which can be generalized to equations in higher dimensions then the nonlinear system will be solved. A number of results concerning the error analysis are achieved. Several examples are included to demonstrate the validity and applicability of the method. Moreover, we prove a theorem and corollary about sufficient condition for the minimum of mean square error under the Legendre coefficients and uniqueness of the solution of the nonlinear VIEs. In addition, illustrative examples are included to demonstrate the validity and applicability of the presented method. | ||
کلیدواژهها | ||
Nonlinear Volterra integral equations؛ Three-dimensional Legendre polynomials؛ Nonlinear algebraic system | ||
آمار تعداد مشاهده مقاله: 16 تعداد دریافت فایل اصل مقاله: 26 |