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Abstract

This study presents a computational method for solving a mathematical model of optimal control for pollutant

spread through forest resources using shifted Bernoulli polynomials (SBPs). The model is formulated as an
optimal control problem governed by a system of ordinary differential equations, which is then transformed into a

nonlinear programming problem (NLP) using the collocation approach and operational matrix of derivative based

on SBPs. The NLP is employed to obtain numerical solutions, and the results demonstrate the proposed method’s
acceptability for modeling pollutant spread through forest resources. The study advises three controls on both

types of industries (wood based and non-wood based) and forest resources to reduce the pollution.
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1. Introduction

The management and control of environmental pollution is a critical issue that has gained significant attention in
recent years, particularly in the context of forest resources. Forests are essential for maintaining ecological balance
and offering crucial ecosystem services, such as carbon sequestration, air purification, and habitat preservation [17].
However, the introduction of pollutants into forest ecosystems can disrupt these delicate systems, leading to the
degradation of forest resources and the loss of biodiversity. The spread of pollutants through forest resources can occur
through various pathways, including atmospheric deposition, surface water runoff, and groundwater contamination.
Understanding and mitigating the dynamics of pollutant spread in forest environments is, therefore, a pressing challenge
for environmental researchers and policymakers.

Developing efficient numerical solutions for the optimal control of pollutant spread is essential for effective environ-
mental management and the preservation of forest resources [17]. The importance of this research topic is underscored
by the significant environmental and economic impacts of pollutant spread in forest ecosystems. Pollutants can
adversely affect the growth and health of forest vegetation, leading to the loss of valuable timber resources and the
disruption of ecosystem services. Furthermore, the contamination of forest soils and water bodies can have far-reaching
consequences, impacting the health and well-being of wildlife and human populations that depend on these resources
[17]. The economic costs associated with the remediation and restoration of degraded forest environments can be
substantial, highlighting the need for proactive and efficient strategies for the management of pollutant spread.

One prominent approach in the literature has been the use of systems of nonlinear ordinary differential equations
to capture the relationships between key variables such as forest resource density, wood based industries, non-wood
based industries, and associated pollutants [1, 17]. For example, the paper [17] formulated a model with five discrete
compartments and derived the basic reproduction number R0 using the next generation matrix method. Sensitivity
analysis has also been a valuable tool in these modeling studies, allowing researchers to determine the impact of
various model parameters on the spread of pollutants [2, 17]. Other works have explored the effects of toxicants,
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intermediate products, and the interactions between industrialization, population, and pollution on renewable resources
[5, 12, 15, 16]. While these mathematical models have provided important insights, the numerical solution of the
associated optimal control problems remains a challenge. Conventional numerical methods can be computationally
intensive, especially for high-dimensional systems. To address this, some researchers have explored the use of advanced
numerical techniques, such as those based on orthogonal polynomials. The use of Bernoulli polynomials for the
numerical solution of optimal control problems has gained attention in recent years [6, 7].

In this context, the use of Bernoulli polynomials has emerged as a promising approach for modeling and solving
optimal control problems related to pollutant spread. The main advantages of using Bernoulli polynomials to approx-
imate solutions of complex systems are Computational simplicity and efficiency and acceptable accuracy. Bernoulli
polynomials have a simple, linear structure that makes the computations easy and efficient, which is particularly useful
for complex systems with many variables. By selecting an appropriate degree for the Bernoulli polynomial, one can
achieve a reasonably accurate approximation of the actual solution. In many cases, a low degree is sufficient [6, 8]. The
efficient numerical solution of optimal control problems based on Bernoulli polynomials can provide environmental
managers and decision-makers with a valuable tool for designing and implementing effective strategies for the mitiga-
tion and control of pollutant spread in forest resources. The proposed research aims to develop an efficient numerical
solution for the optimal control of pollutant spread through forest resources based on Bernoulli polynomials and its
operational matrix [14]. By using these polynomials and the collocation method, the optimal control problem of the
forest resource was turned into a NLP. There are different optimization methods to solve this optimization problem
[13]. The successful completion of this research will contribute to the existing body of knowledge in the field of optimal
control and environmental management, providing a novel and efficient approach for addressing the critical issue of
pollutant spread in forest resources.

The structure of this paper is as follows: Section 2 covers the introduction of mathematical models for pollutant
spread through forest resources. Some basic definitions of shifted Bernoulli polynomials and its operational matrix of
derivative are presented in Section 3. Section 4 is devoted to the numerical approach for solving the mathematical
modeling for pollutant spread through forest resources. Convergence analysis is given in section 6. In section 7, a
numerical simulation is presented to demonstrate the practicality and precision of our method. Lastly, concluding
remarks are proved.

2. Mathematical model

Mathematical modeling is a crucial process in science and engineering that helps us describe and predict real-
world phenomena using mathematical tools. Mathematical modeling has wide applications in various scientific and
engineering fields, including mechanics, electronics, economics, medicine, and more. This process helps us simplify and
understand complex phenomena and make more accurate predictions. The mathematical models for pollutant spread
through forest resources investigate and predict the way pollutants spread in forest environments. These models help
researchers better understand the behavior of pollution in forests and develop methods to control and reduce pollution.
This type of model is mentioned in [17], which we have included in the following problem:

Problem A: Find the state-control function pair, t −→ (x(t), u(t)) ∈ R5 × R3, for minimizing the cost function

J =

∫ L

0

(
A1F2(t) +A2W2(t) +A3I2(t) +A4P2

w(t) +A5P2
I (t) + ω1U2

1 (t) + ω2U2
2 (t) + ω3U2

3 (t)
)
dt, (2.1)

subject to the dynamics,

dF
dt = B − (βW + g)F − β1FW + ε1PW − γ1F − γ2F + ε2PI + U1W − µF ,
dW
dt = (βW + g)F + β1FW − δ1W + δ2I − η1W −U1W −U2W − µW,

dI
dt = −QI + δ1W − δ2I − η2I − U3I − µI,
dPW

dt = η1W − ε1PW + γ1F + U2W − µWPW ,
dPI

dt = η2I − ε2PI + γ2F + U3I − µIPI ,

(2.2)
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Table 1. Notation and parametric values.

Notation Description Parametric value

B Compactness level of forest resources 100
Q The constant rate of resources provided to non-wood based 0.6

industries which independent on forest resources
g movement of wood based industries to the forest region which 0.8

directly depends on the density of forest resources
β The rate of decline of forest resources caused by wood based 0.04

industries
β1 The growth rate of wood based industries attributed to forest resources 0.003
µ The natural depletion rate 1
µW The natural depletion rate of pollutants released by wood 1

based industries
µI The natural depletion rate of pollutants released by non-wood 1

based industries
δ1 The rate of competition effects of I on W 0.5
δ2 The rate of competition effects of W on I 0.3
ε1 The loss of pollutants generated by wood based industries due 0.02

to forest resources
ε2 The loss of pollutants generated by non-wood based industries 0.01

due to forest resources
γ1 Depletion rate of forest resources due to the pollutants 0.5

generated through wood based industries
γ2 Depletion rate of forest resources due to pollutants from non-wood industries 0.5
η1 Increased rate of wood based pollutant emissions from industries 0.1
η2 Increased rate of pollutant emissions from non-wood sources in 0.7

industries

where F ,W, I,PW ,PI ≥ 0.
The proposed model includes five distinct compartments: forest resource density (F), wood based industry density

(W), non-wood based industry density (I), pollutants from wood based industries (PW ), and pollutants from non-
wood based industries (PI). The control rate U1 is responsible for the reduction of wood-based industries in order
to manage the use of forest resources. The control rates of U2 and U3 reduce pollutants from wood and non-wood
based industries, respectively. The symbols, notations and their values used in this mathematical model are presented
below:

3. Preliminaries

In this section, we introduce SBPs and it’s operational matrix of the derivative, that in the numerical approach
section 4, we use these polynomials to approximate the solutions of the problem of optimal control of the spread of
forest pollution.

3.1. Shifted Bernoulli polynomials. Shifted Bernoulli polynomials on the interval [0, L] can be defined as follows:

Bi,L(t) =

√
2i+ 1

L

i∑
k=0

(−1)
i−k
(

i
i− k

)(
i+ k
k

)
(
t

L
)
k

, i = 0, 1, . . . (3.1)

Here, BN,L(t) represents the vector of the first N + 1 SBPs:

BN,L(t) = [B0,L(t),B0,L(t), . . . ,BN,L(t)]T . (3.2)
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Any function u(t) ∈ L 2[0, L] (subset the Hilbert space H) can be approximated by u(t) ' ũ(t), where ũ(t) ∈
span{Bi,L(t)} [9]. This implies that for any ν(t) ∈ Y = span{Bi,L(t)}:

‖ u(t)− ũ(t) ‖≤‖ u(t)− ν(t) ‖ . (3.3)

Thus, u(t) can be approximated as:

u(t) ' ũ =
N∑
i=0

uiBi,L(t) = UTBN,L(t), (3.4)

where U = [u0, u1, u2, . . . , uN ]T , and ui can be determined by by the formula

ui =

∫ L

0

u(t)Bi,L(t)dt, i = 0, 1, . . . , N. (3.5)

3.2. SBPs Operational Matrix of the derivative. The vector BN,L(t) presented in Eq. (3.2) has a derivative
that can be expressed as follows:

dBN,L(t)

dt
= D∗BN,L(t), (3.6)

where D∗ is the operational derivative matrix of size (N + 1) × (N + 1). In this section, we derive the matrix D∗.

According to Eq. (3.3), each of component of the vector
dBN,L(t)

dt ∈ H have a unique best approximation from the set

Y . Therefore there is B(t) = [b0(t), b1(t), . . . , bN (t)]T , bi(t) ∈ Y, i = 0, · · ·N as

∀ν(t) ∈ H, ‖ dBN,L(t)

dt
−B(t) ‖≤‖ dBN,L(t)

dt
− ν(t) ‖ . (3.7)

Hence, we can deduce that

∀ν(t) ∈ H, < dBN,L(t)

dt
−B(t), ν(t) >= 0, (3.8)

where 〈·, ·〉 denotes the inner product. Since bi(t) ∈ Y , there exist unique coefficients di,j for i, j = 0, . . . , N that can
be shown as follows:

dBN,L(t)
dt = B(t) = [b0(t), b1(t), . . . , bN (t)]T

=

[
N∑
j=0

d0,jBj,L(t),
N∑
j=0

d1,jBj,L(t), . . . ,
N∑
j=0

dN,jBj,L(t)

]T
= D∗BN,L(t),

where D∗ = [di,j ] is a matrix of size (N + 1)× (N + 1). Using Eq. (3.8), we have:

<
dBN,L(t)

dt
−D∗BN,L(t),BN,L(t) >= 0.

For clarity, we write:

D∗ < BN,L(t),BN,L(t) >=<
dBN,L(t)

dt
,BN,L(t) >, (3.9)

where 〈BN,L(t),BN,L(t)〉 is a matrix of size (N + 1)× (N + 1). Let

D =< BN,L(t),BN,L(t) >=

∫ L

0

BN,L(t)BT
N,L(t)dt. (3.10)

Therefore, the function
dBN,L(t)

dt can be expanded in SBPs as follows:

dBN,L(t)

dt
= D∗BN,L(t),
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from which, using Eqs. (3.9) and (3.10), we have:

D∗ =<
dBN,L(t)

dt
,BN,L(t) > D−1.

4. Numerical Approach

Using the SBPs, we can approximate our unknown functions within Problem A as follows:

F(t) ' κT1 BN,L(t), W(t) ' κT2 BN,L(t), I(t) ' κT3 BN,L(t),

PW (t) ' κT4 BN,L(t), PI(t) ' κT5 BN,L(t), U1(t) ' κT6 BN,L(t),
U2(t) ' κT7 BN,L(t), U3(t) ' κT8 BN,L(t),

(4.1)

in which κi, i = 1, . . . , 8 are

κ1 = [k0, . . . , kN ]T , κ2 = [kN+1, . . . , k2N+1]T , κ3 = [k2N+2, . . . , k3N+2]T ,

κ4 = [k3N+3, . . . , k4N+3]T , κ5 = [k4N+4, . . . , k5N+4]T . κ6 = [k5N+5, . . . , k6N+5]T

κ7 = [k6N+6, . . . , k7N+6]T , κ8 = [k7N+7, . . . , k8N+7]T .

By using Eqs. (3.6) and (4.1), we have

dF(t)
dt ' κ

T
1D
∗BN,L(t), dW(t)

dt ' κT2D∗BN,L(t), dI(t)
dt ' κ

T
3D
∗BN,L(t),

dPW (t)
dt ' κT4D∗BN,L(t), dPI(t)

dt ' κT5D∗BN,L(t).
(4.2)

By substituting equations (4.1) and (4.2) in system dynamics (2.2), we have 5 equations and (8N + 8) unknowns of
ki. By substituting the initial conditions

F(0) = F0 = 10, W(0) =W0 = 8, I(0) = I0 = 7, PW (0) = PW0 = 3, PI(0) = PI0 = 1,

in equations (4.1), we can obtain 5 equations as follows:

F0 = κT1 BN,L(0), W0 = κT2 BN,L(0), I0 = κT3 BN,L(0),

PW0 = κT4 BN,L(0), PI0 = κT5 BN,L(0).

By collocating the equations in constraints of problem A at N Gauss-Legendre (GL) nodes τi, we obtain 5N total
equations

κT1D
∗BN,L(τi) = B − (β(κT2 BN,L(τi)) + g)(κT1 BN,L(τi))− β1(κT1 × κT2 )BN,L(τi) + ε1(κT4 BN,L(τi))

−γ1(κT1 BN,L(τi))− γ2(κT1 BN,L(τi)) + ε2(κT5 BN,L(τi)) + (κT6 × κT2 )BN,L(τi)

−µ(κT1 BN,L(τi)),

κT2D
∗BN,L(τi) = (β(κT2 BN,L(τi)) + g)(κT1 BN,L(τi)) + β1(κT1 × κT2 )BN,L(τi))− δ1(κT2 BN,L(τi))

+δ2κ
T
3 BN,L(τi)− η1(κT2 BN,L(τi))− (κT6 × κT2 )BN,L(τi)− (κT7 × κT2 )BN,L(τi)

−µ(κT2 BN,L(τi)),

κT3D
∗BN,L(τi) = −QκT3 BN,L(τi) + δ1(κT2 BN,L(τi))− δ2κT3 BN,L(τi)− η2κT3 BN,L(τi)

−(κT8 × κT3 )BN,L(τi)− µκT3 BN,L(τi),

κT4D
∗BN,L(τi) = η1(κT2 BN,L(t))− ε1κT4 BN,L(τi) + γ1(κT1 BN,L(τi)) + (κT7 × κT2 )BN,L(τi)−

µWκ
T
4 BN,L(τi),

κT5D
∗BN,L(τi) = η2κ

T
3 BN,L(τi)− ε2κT5 BN,L(τi) + γ2(κT1 BN,L(τi)) + (κT8 × κT3 )BN,L(τi)

−µIκT5 BN,L(τi).

(4.3)
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The equations now give (5N + 5) nonlinear algebraic equations. Gauss Legendre quadrature is used after appropriate
transformations to approximate the value function given in (2.1), as follows:

J =
∫ L
0

(
A1F2(t) +A2W2(t) +A3I2(t) +A4P2

w(t) +A5P2
I (t) + ω1U2

1 (t) + ω2U2
2 (t) + ω3U2

3 (t)
)
dt

= L
2

∫ 1

−1

(
A1F2(L(η+1)

2 ) +A2W2(L(η+1)
2 ) +A3I2(L(η+1)

2 )

+A4P2
w(L(η+1)

2 ) +A5P2
I (L(η+1)

2 )
)
dη

= L
2

∑N
i=1$i

(
A1F2(L(ηi+1)

2 ) +A2W2(L(ηi+1)
2 ) +A3I2(L(ηi+1)

2 )

+A4P2
w(L(ηi+1)

2 ) +A5P2
I (L(ηi+1)

2 ) + ω1U2
1 (L(ηi+1)

2 ) + ω2U2
2 (L(ηi+1)

2 ) + ω3U2
3 (L(ηi+1)

2 )
)
,

(4.4)

where ηi’s are the zero point of the Legendre polynomial LN (t) at [−1, 1], and $i’s are the corresponding weights.
The quadrature weight $i can be obtained from the following relationship [11]:

$i =
2

(1− η2i )[L′N (ηi)]2
. (4.5)

At last, the problem A is converted to problem AN as follows:
Problem AN : Find κi for i = 0, · · · , 8N + 7 that minimize

JN =
L

2

N∑
i=1

$i

(
A1F2(

L(ηi + 1)

2
) +A2W2(

L(ηi + 1)

2
) +A3I2(

L(ηi + 1)

2
) +A4P2

w(
L(ηi + 1)

2
)

+A5P2
I (
L(ηi + 1)

2
) + ω1U2

1 (
L(ηi + 1)

2
) + ω2U2

2 (
L(ηi + 1)

2
) + ω3U2

3 (
L(ηi + 1)

2
)
)

(4.6)

subject to

κT1D
∗BN,L(τi) = B − (β(κT2 BN,L(τi)) + g)(κT1 BN,L(τi))− β1(κT1 × κT2 )BN,L(τi) + ε1(κT4 BN,L(τi))

− γ1(κT1 BN,L(τi))− γ2(κT1 BN,L(τi)) + ε2(κT5 BN,L(τi)) + (κT6 × κT2 )BN,L(τi)

− µ(κT1 BN,L(τi)),

κT2D
∗BN,L(τi) = (β(κT2 BN,L(τi)) + g)(κT1 BN,L(τi)) + β1(κT1 × κT2 )BN,L(τi))− δ1(κT2 BN,L(τi))

+ δ2κ
T
3 BN,L(τi)− η1(κT2 BN,L(τi))− (κT6 × κT2 )BN,L(τi)− (κT7 × κT2 )BN,L(τi)

− µ(κT2 BN,L(τi)),

κT3D
∗BN,L(τi) = −QκT3 BN,L(τi) + δ1(κT2 BN,L(τi))− δ2κT3 BN,L(τi)− η2κT3 BN,L(τi)

− (κT8 × κT3 )BN,L(τi)− µκT3 BN,L(τi),

κT4D
∗BN,L(τi) = η1(κT2 BN,L(t))− ε1κT4 BN,L(τi) + γ1(κT1 BN,L(τi)) + (κT7 × κT2 )BN,L(τi)

− µWκT4 BN,L(τi),

κT5D
∗BN,L(τi) = η2κ

T
3 BN,L(τi)− ε2κT5 BN,L(τi) + γ2(κT1 BN,L(τi)) + (κT8 × κT3 )BN,L(τi)− µIκT5 BN,L(τi).

(4.7)

When the continuous problem A is discretized, it converts the infinite-dimensional problem A into a finite-dimensional
nonlinear optimization problem, referred to as AN . Various advanced NLP techniques are available to solve this
problem [10]. The approach used for solving the nonlinear constrained optimization problem involves the sequential
quadratic programming (SQP) algorithm, which is an iterative technique for nonlinear optimization [10].
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5. Convergence analysis

To facilitate the convergence analysis, we reformulate the problem A in a vectorial framework, thereby enable a
more succinct and generalized examination of the underlying mathematical structure. Let

x′(t) = F (x(t), u(t)), (5.1)

where x(t) = (F(t),W(t), I(t),Pw(t),PI(t)) and u(t) = (U1(t),U2(t),U3(t)) be state and control vectors of problem
A. Here, F (x(t), u(t)) is as following

F (x(t), u(t)) =


B − (βW + g)F − β1FW + ε1PW − γ1F − γ2F + ε2PI + U1W − µF ,

(βW + g)F + β1FW − δ1W + δ2I − η1W −U1W −U2W − µW,
−QI + δ1W − δ2I − η2I − U3I − µI,
η1W − ε1PW + γ1F + u2W − µWPW ,
η2I − ε2PI + γ2F + U3I − µIPI

 .
Let x∗N (t) = (F∗N (t),W∗N (t), I∗N (t),P∗wN (t),P∗IN (t)) and u∗N (t) = (U∗1N (t),U∗2N (t),U∗3N (t)) be an optimal solution of
problem AN . Also, let

xN (t) = (κT1 BN,L(t), κT2 BN,L(t), κT3 BN,L(t), κT4 BN,L(t), κT5 BN,L(t)),

is N-th order of approximation x∗N and uN (t) is any approximation of u∗N (t), where BN,L(t) is the vector of SBPs
defined by (3.1). It is worth mentioning that BN,L(t) can be any other orthogonal polynomials. We now consider a
sequence of problem AN , where N ranges from N1 to infinity. Consequently, we obtain a sequence of discrete optimal
solutions {(x∗i , u∗i ) : i = 1, · · · , N}∞N=N1

and their corresponding approximation functions {(xN , uN )}∞N=N1
. Theorem

5.1 demonstrate that if problem A has the feasible solutions, then problem AN also has the feasible soltions.

Theorem 5.1. Given that (x, u) are feasible solutions for Problem A and that the state function x(t) lies within
a Sobolev space Wm,∞ where m ≥ 2, for sufficiently large N , Problem AN has a feasible solution (x̄i, ūi). Here,
ūi = u(si) and

||x(si)− x̄i||∞ ≤M(N − 1)1−m, 1 ≤ i ≤ N. (5.2)

The nodes si are Legendre-Gauss-Lobatto points, and M is a positive constant independent of N [4].

The Theorem 5.1 ensures the existence of high-quality feasible solutions for Problem AN when N is sufficiently
large, with the control variables closely approximating the true control function and the state variables being close
to the true state trajectory. The following theorem is important because it provides a theoretical guarantee that
the pseudospectral method, which discretizes the optimal control problem, can be used to reliably approximate the
solution of the original continuous problem. Following lemma and definition are utilized in Theorem 5.4.

Lemma 5.2. Let τj , j = 1, . . . , N be the nodes of the G-L quadrature and wj the associated weights. If the function
f(t) is Riemann integrable, then we have:∫ 1

−1
f(t) dt = lim

N→∞

N∑
j=1

f(τj)wj .

This result states that for a Riemann integrable function f(t), the sum of the function’s values at the G-L nodes,
weighted by their respective weights, converges to the integral of f(t) over the interval [−1, 1] as N approaches infinity.

Definition 5.3. A continuous function ζ(t) is described as a uniform accumulation point of the sequence {ζN (t)}∞N=1

on the interval t ∈ [−1, 1], if a subsequence of {ζN (t)}∞N=1 exists that converges uniformly to ζ(t).

Theorem 5.4. Consider the sequence {(x∗i , u∗i ), 1 ≤ i ≤ N}∞N=N1
, which represents the optimal solutions for the

discretized problem AN . Additionally, let {(xN (t), uN (t))}∞N=N1
denote the corresponding sequence of interpolated

functions. Suppose (q(t), u(t)) is any accumulation point of the sequence {(x′N (t), uN (t))}∞N=N1
in a uniform sense.

Then p(t) will be an optimal control for the original continuous problem A, and x(t) that satisfies

x(t) =

∫ t

0

q(τ)dτ + x(0),
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will be the associated optimal trajectory.

This theorem confirms that, under specific conditions, the sequence of solutions derived from the discretized problem
AN converges to the solution of the original continuous problem A.

The following lemma provides a bound for the approximation error when a function f(t) in CN+1[0, L] is approx-
imated by the best approximation from a space spanned by a set of basis functions, demonstrating that the error
decreases as the number of basis functions increases.

Lemma 5.5. Let f(t) be a function that belongs to the space CN+1[0, L]. Assume SN is the span of the set of func-
tions {B0,L(t),B1,L(t), . . . ,BN,L(t)}. If CTBN,L(t) is the best approximation of f(t) within SN , then the following
inequality holds:

‖f(t)− CTBN,L(t)‖L 2[0,L] ≤
K2L2N+3

(N + 1)!2(2N + 3)
,

where K is defined as maxt∈[0,L] |f (N+1)(t)|.

Proof. Given that the set {1, t, . . . , tN} forms a basis for the space of polynomials of degree N, we define:

y1(t) = f(0) + tf ′(0) +
t2

2!
f ′′(0) + ...+

tN

N !
f (N)(0).

From the Taylor series expansion, the difference between f(t) and y1(t) can be expressed as:

|f(t)− y1(t)| =
∣∣∣∣f (N+1)(ξt)t

N+1

(N + 1)!

∣∣∣∣ ,
where ξt is some value in the interval (0, L). Since CTBN,L(t) is the best approximation of f(t) within SN , and y1(t)
is an element of SN , we can assert:

‖f(t)− CTBN,L(t)‖2L 2[0,L] ≤ ‖f(t)− y1(t)‖2L 2[0,L].

This leads to:∫ L

0

|f(t)− y1(t)|2dt =

∫ L

0

∣∣∣∣f (N+1)(ξt)t
N+1

(N + 1)!

∣∣∣∣2 dt ≤ K2

(N + 1)!2

∫ L

0

t2N+2dt =
K2L2N+3

(N + 1)!2(2N + 3)
.

Taking the square root completes the proof, establishing the required bound. �

6. Numerical Simulation

The numerical simulations conducted in Wolfram Mathematica R2017a on a 64-bit computer with an Intel Core i7
processor (1.6GHz) and 4GB of RAM investigated the optimal control for pollutant spread through forest resources
based on SBPs. The parameter values used in the simulations are provided in Table 1, which are referenced from [17].
The behavior of the optimal control for pollutant spread through forest resources is illustrated in Figures 1-8. In these
figures, the unit of time axis is in decade.

Figure 1 shows the forest resource density over time. The graph shows that the density of forest resources starts high
at t = 0 but declines steadily over time. Around t = 5, there is a significant drop, likely due to the cumulative effects
of pollution and resource depletion. Towards t = 20, the density stabilizes at a lower value, suggesting that the forest
resources have reached a new equilibrium or that the maximum impact of control measures has been achieved. The
decrease in forest resources is directly related to the increase in pollution from wood-based and non-wood industries,
which is observable in Figures 4 and 5. Figure 2 demonstrates wood based industry density over time. Initially,
the density of wood based industries is moderate but increases sharply, peaking around t = 5, which indicates rapid
industrial growth. Following this peak, there is a gradual decline, and the density stabilizes around t = 15, possibly
due to the implementation of regulatory controls or resource depletion. The increase in the density of wood based
industries can lead to an increase in pollution emissions, as observed in Figure 4 from wood-based industry pollution.
Figure 3 shows non-wood based industry density over time. The density of non-wood based industries starts low and
increases steadily throughout the time period. This figure is approximately similar to the wood-based industries figure,
but the density of non-wood industries is lower. This shows that the activities of non-wood industries are less compared
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to wood-based industries. Similar to wood-based industries, the increase in the density of non-wood industries can
also lead to an increase in pollution emissions, as observed in the graph related to pollution from non-wood industries
in Figure 5.

Figure 4 shows pollutants from wood based Industries over time. Pollutant levels from wood-based industries begin
low but increase sharply with industrial activity. The pollutant levels peak in correlation with the peak in industry
density and then decline, approximately stabilizing after t = 15. This pattern suggests that control measures have been
effective in reducing pollutants from these industries. The increase in pollution from wood-based industries can lead
to a reduction in forest resources, as observed in the forest density Figure 1. Figure 5 demonstrates pollutants from
non-wood based industries over time. The pollutants from non-wood-based industries increase steadily until t = 5,
and after that don’t have significant decline, reflecting the continuous growth of these industries and indicating a need
for stricter pollution control measures. Similar to wood-based industries, the increase in pollution from non-wood
industries can also lead to a reduction in forest resources as viewing in Figure 1.

Figure 6, 7 and 8 are control effort U1, U2 and U3 over time. Figure 6 is dedicated to forest control and illustrates the
optimal control behavior for forest resources. The graph in this figure depicts the changes in forest control (U1) over
time t. At the beginning t = 0, the control value is near zero. As time progresses, the control value becomes negative,
reaching its lowest point around t = 5. After this point, the control value gradually increases, approaching zero around
t = 20. This pattern indicates that, in the early stages of the study period, there is a greater need for control on the
forest. This figure effectively demonstrates the dynamic behavior of optimal control for forest resource management,
showing that timely and appropriate control measures can significantly aid in improving forest resources. Control
measures can reduce pollution levels and stabilize forest resources. The graph of figure 7 starts low and increases
rapidly. This suggests a staggered implementation of control measures. After peaking around t = 5, U2 also declines,
then approximately stabilizes, indicating its effectiveness in pollutant control. Controls applied to non-wood industries
can reduce pollution emissions and stabilize forest resources. Figure 8 is similar to the wood-based industries control
figure but at a lower level. Controls applied to non-wood industries can reduce pollution emissions and stabilize forest
resources.

7. Conclusion

In this study, we presented a mathematical model to analyze the depletion of forest resources and the spread of
pollutants through industrial activities. This model is based on optimal control governed by five ordinary differential
equation. By applying numerical simulations based on collocation method and using SBPs and it’s operational
matrix of derivative, we convert the original OCP into a NLP. We also demonstrated the effectiveness of various
control strategies in mitigating the adverse effects of industrialization on forest ecosystems. The results highlight the
importance of implementing sustainable practices and strict regulatory measures to conserve forest resources while
balancing industrial growth. The convergence analysis of the method is also presented. The mathematical model
and the associated numerical simulations provide a valuable framework for policymakers and environmental managers
to evaluate and optimize strategies for forest conservation. Future work could extend this model by incorporating
more complex interactions and feedback mechanisms, as well as exploring the socio-economic impacts of different
conservation strategies. In summary, this research underscores the critical need for integrated approaches that combine
mathematical modeling, numerical simulations, and practical policy measures to address the challenges of forest
resource depletion and environmental pollution.
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