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Abstract
Naval hydrodynamics fundamentally depends on a detailed understanding of the boundary layers forming around

a ships hull, which generate resistance to advancement. Accurately modeling these layers is critical for calculating
hydrodynamic resistance and estimating the propulsion power needed to achieve the desired speed specified by the

shipowner. Traditionally, the velocity distribution within the boundary layer is described by the Blasius equation,

a nonlinear third-order differential equation commonly solved using the Runge-Kutta numerical method, renowned
for its accuracy.

This study proposes a novel direct and explicit approach to solving the Blasius equation around a ships hull,

leveraging a derivative approximation technique implemented with MATLAB to obtain numerical results. By
employing sufficiently small step sizes, the method produces highly accurate results that can serve as a bench-

mark for evaluating the precision of other numerical techniques applied in ship design. The proposed derivative

approximation method provides a simple yet robust tool for solving complex differential equations, demonstrating
its potential as an effective alternative for tackling problems similar to the Blasius equation in naval engineering

applications.

Keywords. Naval hydrodynamics, Boundary layers, Resistance to advancement, Blasius equation, Runge-Kutta method, Approximation of deriva-

tives, MATLAB.
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1. Introduction

In ship design, naval hydrodynamics applies fluid mechanics principles to study the behavior of a vessel moving at the
interface between two continuous media, water and air. The submerged part of the hull, or ”live works,” experiences
hydrodynamic resistance from water, while the emerged superstructure, or ”dead works,” encounters aerodynamic
resistance from air. This analysis enables designers to quantify the total forces opposing the vessels movement, which
together constitute the resistance to be overcome to reach the specified maximum speed [41].

Determining the maximum speed is crucial, as it directly informs the power required on board and subsequently the
selection of an efficient propulsion system capable of meeting performance standards throughout the vessels service
life. For this, the naval architect validates the hull shape, rudder, hull appendages, and structural framework to meet
the clients specified speed and performance objectives. Achieving optimal ship designs requires precise theoretical
calculations at early design stages to balance expected theoretical performance with practical construction constraints.
Recognizing this, Prandtl formulated the foundational principles of boundary layer theory in 1904, which remain
essential in evaluating viscous friction forces between a ships hull and surrounding water, a concept widely applied in
naval hydrodynamics, aeronautics, and hydraulic systems [38].

Building on Prandtls work, Blasius introduced a nonlinear third-order differential equation in 1908 that further
advanced boundary layer theory, although it took several decades for this concept to be fully integrated into fluid
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mechanics [48]. Since the 1960s, advancements in computational methods have expanded the field of fluid mechanics
through numerical approaches to differential equations, including solutions to the Blasius equation. Simultaneously,
recent developments have deepened the analysis of fluid flow in various contexts by leveraging new technologies and
modeling approaches. For example, advanced numerical simulation techniques, such as Large Eddy Simulation (LES)
and Direct Numerical Simulation (DNS), now allow for highly accurate studies of turbulence around the hull, flow
separation phenomena, and wake formation. These methods provide a comprehensive understanding of flow dynamics,
facilitating design optimizations based on reliable data [47]

Furthermore, the integration of machine learning into fluid mechanics represents a significant innovation. These
data-driven methods enable effective prediction of flow fields and hydrodynamic resistances, accelerating design it-
erations and allowing real-time adjustments of hull configurations under various operating conditions. Additionally,
studies on fluid-structure interactions have intensified, particularly to optimize hulls for hybrid propulsion systems.
This research contributes to a deeper understanding of the effects of interactions between structural elements and fluid
forces [26].

Finally, boundary layer control methods, such as surface micro-roughness, riblets, and polymer coatings, aim to
reduce friction drag, while more active techniques like micro-bubble injection or plasma actuators promise substantial
additional drag reductions. Although some of these innovations are still in the experimental phase, they offer promising
prospects for designing more efficient and fuel-saving vessels [1].

This article introduces a novel, straightforward, and explicit solution to the Blasius equation, implemented through
numerical methods in MATLAB. By approximating the equations derivatives, the approach reduces the equation to
a second-order form, with one root representing the Blasius solution. With a step size as small as 10-3, the method
delivers highly accurate results, serving as a benchmark for evaluating other numerical techniques used in ship design.
This innovative approach underscores its potential to support optimal hydrodynamic performance in modern naval
engineering applications [31].

2. Study of the flow around a Hull

2.1. Concept of the boundary layer. Consider, for instance, a hull in motion: a thin layer of water, known as
the ”boundary layer,” adheres closely to the hull due to tangential viscous forces. This water layer moves at nearly
the same speed as the water particles in direct contact with the hulls surface. Moving away from the hull, the speed
within the boundary layer gradually decreases until it matches the zero speed of free water at an infinite distance.
When the hull has an optimized profile, this boundary layer, ranging from just a few centimeters thick at the bow
to several decimeters at the stern, envelops the hull entirely, with these forces generating what is known as frictional
resistance [21].

In cases where the hull has abrupt shape changes, such as protrusions from hull appendages, the boundary layer
may separate from the hull, producing vortices of varying intensity. This phenomenon leads to an additional drag
component called ”vortex resistance.” Together, these resisting forces, varying in magnitude based on the ships shape
and speed, are collectively referred to as drag, primarily influenced by viscosity and shear forces [27].

The figure below provides an example of fluid flow around a hull, highlighting the boundary layer region.
The boundary layer is a conceptual representation of the area near the body, where the velocity distribution is

strongly disturbed. It also defines the equivalent velocity distribution from the bodys surface to infinity. Within this
zone, viscous forces dominate, and the equivalent masses of water are carried along with the movement [20].

The boundary layer develops within a non-uniform pressure field, which causes a modification of the shear stress
at the wall and, consequently, the corresponding local viscous forces. It can be considered that the fluid moves at a

speed of −~V at a significant distance from the hull, where an undisturbed speed, V
∞

is observed at a distance d from

the hull [9]. This distance ”d” can be considered to be reached when V=0,99V
∞

. Let us now consider the fluid flow

between the hull and this distance ”d”:

Q =

∫ d

0

z.V dy = z

∫ d

0

V dy. (2.1)
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Figure 1. Representation of the boundary layer around a hull.

Figure 2. Boundary layer on a wall.

If the fluid is assumed to be ideal, the same flow rate would be maintained by inflating the hull by a quantity ”e” such
that:

Q = z · (d− e) · V∞, (2.2)

where we deduce:

z · (d− e) · V∞ = z

∫ d

0

V dy,

e = d− 1

V∞
·
∫ d

0

V dy. (2.3)

This thickness, denoted ”e” is called the boundary layer. It represents the region in the flow where viscous forces
dominate [2]. The boundary layer is, therefore, a concept that allows for the approximation of the hulls behavior as
if it were moving through a perfect inviscid fluid, and it defines the equivalent mass of water carried along in the
movement [54].

The most important concept of the boundary layer is that of momentum. Thus, the statement of the theorem is as
follows: The resultant of the forces applied to a fluid domain is equal to the difference in momentum of the flow rates
between the exit and entry of the domain considered [14].

This theorem theoretically allows us to calculate the total force exerted on a ships hull. The mass flow rate of the
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Figure 3. Concept of boundary layer.

Figure 4. Flow boundary layer.

flow at a distance y is written:

dQ = ρ.h.v.dy. (2.4)

The momentum dq of this flow:

dq = dQ.v = ρ.h.v2.dy. (2.5)

By analogy, the expression for the flow boundary layer can be written:

δ1.V∞ =

∫ ∞
0

(V∞ − v) dy, (2.6)

δ1 =

∫ ∞
0

(1− v

V∞
) dy. (2.7)

Note: the momentum boundary layer is used to study flow in transient conditions based on numerical calculations
and experimental tests.

dq = ρ.h.v2.dy → dq

ρ.h.V 2
∞

=

(
v

V∞

)2

.dy. (2.8)

The flow momentum is proportional to
(

v
V∞

)2
.
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Figure 5. Comparison between flow rate and momentum boundary layer.

If we plot
(

v
V∞

)
and

(
v
V∞

)2
on the same graph, we can affirm that the thickness of the boundary layer of the

momentum is greater than that of flow.
Let δ′ be this supplement, and δ2 be the thickness of the momentum boundary layer δ′ = δ2− δ1,

δ2 =

∫ ∞
0

(
1−

(
v

V∞

)2
)
dy. (2.9)

δ′ =

∫ ∞
0

(
1−

(
v

V∞

)2
)
dy −

∫ ∞
0

(
1− v

V∞

)
dy. (2.10)

2.2. Modern study of flows along a thin board. To determine the viscous friction resistance around the hull of
a ship, we will draw inspiration from the work of the English hydrodynamicist William Froude by studying the flow
along a thin board. To achieve this, we will use the concept of the boundary layer, which defines the equivalent mass
of water involved in the movement. The Reynolds experiment also showed that, in a tube, the flow is laminar at small
Reynolds numbers and becomes turbulent at a critical Reynolds number, which depends on the inlet conditions of the
tube and its roughness [33].

Depending on the experimental conditions, particularly the roughness of the wall considered smooth:

• Re ≤ 5× 105, the flow is laminar.
• 5× 105 ≤ Re ≤ 3× 106, the flow is transitional.
• Re ≥ 3× 106, the flow is turbulent.

The same experiment carried out around a solid body profiled in a flow shows that the transition from laminar to
turbulent in the thickness of the boundary layer occurs from a point located at the distance X of the upstream stopping
point such that Re = V∞·x

ν is between 5.105 and 3.106 depending on the conditions of the experiment (roughness in
particular). The diagram above shows as an example the development of the boundary layer along a flat plate [36].

The characteristics of the fluids used in both work environments are: Air at 0C (Reference temperature):

• ρ = 1.293 kg/m
3

(Air density),
• η = 1.715× 10−5 Pl (Dynamic viscosity),
• ν = η

ρ = 1.326× 10−5 m2/s (Kinematic viscosity).

Sea water at 15C (Average temperature of the world’s seas):

• ρ = 1026 kg/m
3

(Density of sea water),
• η = 1.19× 10−3 Pl (Dynamic viscosity),
• ν = η

ρ = 1.19× 10−6 m2/s (Kinematic viscosity).

In summary :
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Figure 6. Flow along a thin board.

Figure 7. Laminar flow.

• Until V∞·X
ν = 5× 105, the flow is laminar.

• From V∞·X
ν = 3× 106, the flow is turbulent.

Numerical application: For the case of our ship with a length over all of 105 m, moving at 15 knots:

• Xlaminar = 0.07933 m or 8 cm,
• Xturbulent = 0.476 m or 48 cm.

We note that practically the entire hull is in the turbulent regime.

2.3. Development of the Blasius equation. Despite this confirmation, we will still develop the Blasius equation
for the flow around the hull of our ship during the design phase of the project: ”Development of a new concept of
a multi-mission pollution control ship and optimization of its bow bulb ”. The key feature to be exploited is that
the laminar layer has a very small transverse dimension relative to the distance X from the leading edge of the hull
[37]. The flow around the plate is considered planar, the component of the velocity along the z-axis being zero. The
Navier-Stocks equations for a viscous flow reduce to the following plane equations:

∂u
∂x + ∂v

∂y = 0 ( continuity equation)
1
ρ
∂p
∂x + u∂u∂x + v ∂u∂y = ν

(
∂2u
∂x2 + ∂2u

∂y2

)
1
ρ
∂p
∂x + u ∂v∂x + v ∂v∂y = ν

(
∂2v
∂x2 + ∂2v

∂y2

) (2.11)

The boundary conditions to be satisfied are those of the plate, namely: : u = v = 0,
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For y=0.
Furthermore, if the fluid is not very viscous, and this is the case that interests us, the viscosity forces are only

important where the speed gradients are high, i.e. at vicinity of the boundary layer.
If we consider the 1st Navier-Stocks equation:

1

ρ

∂p

∂x
+ u

∂u

∂x
+ v

∂u

∂y︸ ︷︷ ︸
(inertia forces)

= ν

(
∂2u

∂x2
+
∂2u

∂y2

)
︸ ︷︷ ︸
(viscosity forces)

. (2.12)

The boundary layer is precisely the zone where the viscosity forces have the same order of magnitude as the inertial
forces, since the term ∂p

∂x = 0 is verified by experiment.

u
∂u

∂x
+ v

∂u

∂y
∼ ν

(
∂2u

∂x2
+
∂2u

∂y2

)
. (2.13)

By exploiting the fact that δ is very small compared to x we have:

⇒ V 2
∞
x
∼ νV∞

δ2
⇒ δ ∼

√
νx

V∞
, (2.14)

or
δ

x
∼ 1√

Rx
, with Rx =

V∞x

ν
. (2.15)

Order of magnitude for Rx = 5 × 105, δ
x = 0.0014142, so δ = 0.1121938 mm. Obviously, laminar flow can only exist

with polished faces.

δ ∼
√
νx

V∞
⇔ x ∼ V∞

ν
δ2. (2.16)

The boundary layer will therefore have the appearance of a cylinder whose directrix is a parabola , this cylinder
having the plate itself as its plane of symmetry Figure 5.

BLASIUS solves the system of equations by assuming that the velocity distributions are affine to each other in the
proportions of the thicknesses of the boundary layers, i.e [15].

u

V∞
= g (y/δ) . (2.17)

For this equation, we will use a similarity variable η such that:

u

V∞
= g

(y
δ

)
= f ′(η), (2.18)

with η =
y

δ(x)
, and δ(x) =

√
νx

V∞
. (2.19)

However, we know that for a permanent, irrotational and plane flow of an incompressible fluid, the current function
ψ = ψ(x, y) is defined by:

u =
∂ψ

∂y
, and v = −∂ψ

∂x
, (2.20)

u =
∂ψ

∂y
= V∞f

′(η), (2.21)

ψ = V∞

∫
f ′(η) dy = V∞

∫
f ′(η)

√
νx

V∞
dη, (2.22)

⇒ ψ =
√
νxV∞ f(η), (2.23)
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and

v = −∂ψ
∂x

= − ∂

∂x

(√
νxV∞ f(η)

)
− 1

2

√
νV∞
x

f(η)−
√
νxV∞f

′(η)
∂η

∂x
. (2.24)

For η =
√

V∞
νx y we can write:

∂η

∂x
= −1

2

η

x
, and

∂η

∂y
=

√
V∞
νx

,

v = −1

2

√
νV∞
x

f(η) +
1

2

√
νV∞
x

f ′(η)η, (2.25)

v =
1

2

√
νV∞
x

(f ′η − f) , (2.26)

∂u

∂x
=
∂u

∂η

∂η

∂x
= −1

2

V∞
x
f ′′, (2.27)

∂u

∂y
=
∂u

∂η

∂η

∂y
= V∞

√
V∞
νx

f ′′, (2.28)

∂2u

∂y2
=
V 2
∞
νx

f (3)(η). (2.29)

After replacing the terms calculated above from Equation (2.13), we obtain the velocity distribution in the boundary
layer modeled by the Blasius equation:

2f (3) + ff (2) = 0, (2.30)

whose boundary conditions are: f(0) = 0, f ′(0) = 0, and f ′′(0) = a. The value of a will be determined by dichotomy
such that f ′(∞) = 1.
In the following, to solve this equation, we will detail the explicit solution method using derivative approximations.
We will then briefly introduce another approximation method based on a limited expansion (Taylor method) [51].

3. Explicit resolution of the Blasius equation by approximation of the derivatives

For a subdivision (ηi)
n
i=0 of the interval [0, ηn], with η0 = 0 and ηn = x∞, of step h = ηi − ηi−1, we have:

f(ηi)− f(ηi−1) =

∫ ηi

ηi−1

f ′(t) dt. (3.1)

The numerical procedure used to numerically solve Equation (3.1) consists of evaluating the integrals∫ ηi

ηi−1

f (k)(t) dt, for k = 1 to 3,

by adopting the diagram of rectangles on the right, whose precision is very satisfactory insofar as the step is sufficiently
small: ∫ ηi

ηi−1

f ′(t) dt ' hf ′(ηi). (3.2)

Equations (3.1) and (3.2) allow us to first express the derivatives of order less than or equal to 3 as a function of
(ηi), f(ηi−1), and f(ηi−2):

f ′(ηi) =
f(ηi)− f(ηi−1)

h
, (3.3)

f ′′(ηi) =
f ′(ηi)− f ′(ηi−1)

h
. (3.4)
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By injecting Equation (3.3) into (3.4) to obtain:

f ′′(ηi) =
f(ηi)− 2f(ηi−1) + f(ηi−2)

h2
. (3.5)

We will proceed in the same way to express the third derivative:

f ′′′(ηi) =
f(ηi)− 3f(ηi−1) + 3f(ηi−2)− f(ηi−3)

h3
. (3.6)

Next, we will inject the three expressions above into Blasius Equation (3.3) to obtain Equation (3.7) below:

2

(
f(ηi)− 3f(ηi−1) + 3f(ηi−2)− f(ηi−3)

h3

)
+ f(ηi)

(
f(ηi)− 2f(ηi−1) + f(ηi−2)

h2

)
= 0, (3.7)

which can be written in the form of a magnificent second-degree equation in f(ηi):

f(ηi)
2 + 2Aif(ηi)−Bi = 0, (3.8)

with {
Ai = 1

h − f(ηi−1) + f(ηi−2)
2 ,

Bi = 6
h

(
f(ηi−1)− f(ηi−2) + f(ηi−3)

3

)
.

(3.9)

Consequently, the positive solution to Equation (3.8) for i varying from 3 to n is given by:

f(ηi) = −Ai +
√
A2
i +Bi (3.10)

Before solving this equation numerically, we will first express f ′(ηi), f
′′(ηi), and f ′′′(ηi) in order to calculate f(ηi) for

i varying from 1 to 2.
Taking into account the boundary conditions cited above, we obtain:


f ′(η1) = f(η1)−f(0)

h = f(η1)
h ,

f ′′(η1) = f ′(η1)−f ′(0)
h = f(η1)

h2 ,

f ′′′(η1) = f ′′(η1)−f ′′(0)
h = f(η1)

h3 − f ′′0
h .

(3.11)

and


f ′(η2) = f(η2)−f(η1)

h ,

f ′′(η2) = f ′(η2)−f ′(η1)
h = f(η2)−2f(η1)

h2 ,

f ′′′(η2) = f ′′(η2)−f ′′(η1)
h = f(η2)−3f(η1)

h3 .

(3.12)

We inject Equations (3.11) and (3.12) into the Blasius Equation (2.30), we obtain the quadratic equations in f(η1)
and f(η2) below:{

f(η1)2 + 2A1f(η1)−B1 = 0,

f(η2)2 + 2A2f(η2)−B2 = 0.
(3.13)

Such as:{
A1 = 1

h and B1 = 2hf ′′0 ,

A2 = 1
h − f(η1) and B2 = 6

hf(η1).
(3.14)

Using the initial conditions shown above, and noting f(ηi) = fi for i = 0 to n, we will arrive at the following
algorithm:

(1):

f0 = 0, f ′0 = 0, f ′′0 = α, (α ≈ 0.3322 is determined by dichotomy such that f ′n = 1),
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Figure 8. Solution of the function f of the Blasius equation.

A1 =

(
1

h
− f0

)
, B1 = 2hα.

(2):

f1 = −A1 +
√
A2

1 +B1, f ′1 =
f1 − f0
h

, f ′′1 =
f ′1 − f ′0
h

.

(3):

A2 =

(
1

h
− f1

)
, B2 =

6

h
f1.

(4):

f2 = −A2 +
√
A2

2 +B2, f ′2 =
f2 − f1
h

, f ′′2 =
f ′2 − f ′1
h

.

(5): For i = 3 to n
Ai =

(
1

h
+
fi−2

2
− fi−1

)
,

Bi =
6

h

(
fi−1 − fi−2 +

fi−3
3

)
,

and

fi = −Ai +
√
A2
i +Bi, f ′i =

fi − fi−1
h

, f ′′i =
f ′i − f ′i−1

h
.

4. Results and Discussions

After running the program using MATLAB software, we observe that the results improve as we reduce the step
size, respectively for h = 0.1, 0.01, and 0.001, as η varies from 0 to 10. We then see that the solution quickly converges
to that of the Runge-Kutta method.

Indeed, the red crosses ” + ”, which are representative of the points of the functions f and f ′ from the solutions
by approximation of the derivatives, are located exactly at the centers of the blue circles (o), which represent the
solutions by the Runge-Kutta method. The errors for f and f ′ are respectively of the order of 0.0011 and 0.0002.

Indeed, the red crosses (” + ”), which represent the points of the functions f and f ′ from the solutions obtained
by approximation of the derivatives, are located exactly at the centers of the blue circles (”o”), which represent the
solutions obtained using the Runge-Kutta method. The errors for f and f ′ are respectively of the order of 0.0011 and
0.0002.
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Figure 9. Solution of the function f’ of the Blasius equation.

Table 1. Solution of the Blasius equation for a step h = 0.001 by approximation of the derivatives
compared to the Runge-Kutta equation.

ηi f(appro) f(RK) f ′(appro) f ′(RK) f ′′(appro) f ′′(RK)
0.0 0.00000 0.00000 0.00000 0.00000 0.33223 0.33204
0.4 0.02664 0.02656 0.13283 0.13276 0.33164 0.33146
0.8 0.10629 0.10609 0.26484 0.26470 0.32754 0.32737
1.2 0.23826 0.23794 0.39395 0.39376 0.31671 0.31658
1.6 0.42077 0.42027 0.51697 0.51676 0.29674 0.29664
2.0 0.65062 0.64998 0.62998 0.62974 0.26678 0.26674
2.4 0.92302 0.92226 0.72918 0.72895 0.22808 0.22809
2.8 1.23182 1.23092 0.81167 0.81149 0.18396 0.18401
3.2 1.57003 1.56905 0.87620 0.87605 0.13907 0.13915
3.6 1.93052 1.92944 0.92341 0.92334 0.09803 0.09804
4.0 2.30678 2.30567 0.95556 0.95551 0.06420 0.06424
4.4 2.69342 2.69230 0.97589 0.97584 0.03895 0.03902
4.8 3.08639 3.08525 0.98779 0.98777 0.02186 0.02190
4.91 3.19959 3.19844 0.99004 0.99002 0.01836 0.01839
5.2 3.48294 3.48179 0.99424 0.99424 0.01134 0.01136

Compared to other methods, the derivative approximation method is highly accessible, simple, and easy to use,
making it suitable for researchers working on the resolution of any differential equation similar to the Blasius equation.
In fact, this approach has proven to be very effective in solving differential equations that describe various physical
phenomena similar to the Blasius equation. For instance, the Falkner-Skan equation, which generalizes the Blasius
equation, is used to solve potential flow over a dihedral and to describe flow around a thin plate [4].

f
′′′

+ β0ff
′′

+ β1
(
1− (f ′)2

)
= 0. (4.1)

The boundary conditions are:

f(0) = 0, f ′(0) = γ, lim
η→+∞

f ′(η) = 1.

The method simplifies complex differential equations by transforming them into second or third degree equations,
which are significantly easier to solve. This simplification addresses the mathematical challenges posed by more
complex equations, such as the Blasius equation. Mastering this technique enables researchers to save time and



Unco
rre

cte
d Pro

of

12 A. LAHLALI, Z. EL MASKAOUI, L. BOUSSIHINE, B. NADIR, AND A. DINANE

achieve more accurate and efficient solutions, even without advanced mathematical expertise [5]. By making such
equations more accessible, this approach finds application in various research contexts, particularly in fields where
optimizing hydrodynamic forces and minimizing resistance are critical. Consequently, it contributes to significant
advancements by offering a reliable and user-friendly methodological framework that researchers can leverage to refine
designs, validate models, and make informed decisions in naval design and analysis [8].

5. Validation of Results on a Practical Case

To validate these results, we will calculate the friction forces on a thin plate representing a hull equivalent to the
ship under study, with a length between perpendiculars (LPP) of 100 m and a wetted hull surface area (A) of 2000
m. This corresponds to considering a thin plate with a length L = 100 m and a width b = 20 m.

5.1. Boundary Layer Solutions: The characteristic thicknesses of the boundary layer are key parameters in fluid
mechanics for describing the flow behavior near a surface. They quantify the impact of viscosity on the velocity
distribution in the region close to the surface, particularly in the laminar regime.

Using the results from Table 1, obtained through the solution of the Blasius equation, we will successively calculate
the characteristic thicknesses of the boundary layer: wall thickness, flow thickness, and momentum thickness, according
to Equations (2.7), (2.9), and (2.10).

- First formula (boundary layer thickness):
The boundary layer thickness, defined as the distance from the hull surface where the fluid velocity reaches approx-

imately 99% of the free-stream velocity V∞, is derived from Table 1 above, corresponding to η ≈ 4.91. The thickness
δ depends on the kinematic viscosity ν, the distance along the surface x, and the free-stream velocity V∞. It is often
used to evaluate the extent of the region influenced by viscosity.

Premire erreur

(
1

100

)
, δ = 4.91

√
ν · x
V∞

. (5.1)

- Second formula (flow thickness):
The displacement thickness δ1 represents the region where a significant portion of the volumetric flow displaced by

the boundary layer is concentrated. In other words, it is the area where most of the velocity changes occur within
the boundary layer, providing insight into the velocity distribution in this zone. It is useful for estimating the impact
of viscosity on the flow distribution. This thickness will be determined analytically by calculating the integral of the
boundary layer, replacing its limits and variables based on Table 1 above [10].

δ1 =

∫ ∞
0

(
1− v

V∞

)
dy =

∫ ∞
0

(1− f ′(η)) dη δ(x),

δ1 = δ(x) [η∞ − f(η)]
∞
0 = δ(x) [4.91− 3.19959] = 1.71

√
ν · x
V∞

,

δ1 = 1.71

√
ν · x
V∞

. (5.2)

- Third formula (momentum thickness):
The momentum thickness δ2 characterizes the region where the change in momentum is significant. It corresponds

to the distance over which viscous forces substantially alter the motion of the fluid. This parameter is crucial for
calculating the viscous forces acting on an immersed surface, such as a ships hull.

As observed above, the momentum boundary layer thickness is greater than the displacement thickness. Let δ′

represent this difference, and δ2 the thickness of the momentum boundary layer such that:

δ′ = δ2 − δ1,
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with 
δ2 =

∫∞
0

(
1−

(
v
V∞

)2)
dy,

δ′ =
∫∞
0

(
1−

(
v
V∞

)2)
dy −

∫∞
0

(
1− v

V∞

)
dy,

δ′ =

∫ ∞
0

(
1−

(
v

V∞

)2
)
dy −

∫ ∞
0

(
1− v

V∞

)
dy =

∫ ∞
0

v

V∞

(
1− v

V∞

)
dy =

∫ ∞
0

f ′(η) (1− f ′(η)) dη δ(x). (5.3)

This integral will be calculated numerically using the trapezoidal method:

δ′ =
∞∑
i=0

ηi+1 − ηi
2

(f ′(ηi+1) (1− f ′(ηi+1)) + f ′(ηi) (1− f ′(ηi))) . (5.4)

From the numerical results in Table 1 above for the function f ′, with η values ranging from 0 to 4.910, we derive
the following expression for the momentum boundary layer:

δ2 = 0.664

√
νx

V∞
.

5.2. Local friction coefficient: The exact Blasius solution for a laminar boundary layer over a flat plate provides
the velocity values necessary to introduce the local friction coefficient C ′F , which serves as a measure of the drag caused
by the fluid’s viscosity. It allows the evaluation of the frictional resistance opposing the motion of a surface in contact
with a fluid.

The local friction coefficient is defined by the following formula:

C ′F =
τ0
ρ
2V

2
∞
, (5.5)

with τ0 = µ
(
∂u
∂y

)
y=0

, representing the wall shear stress as a function of the dynamic viscosity µ = ν
ρ and the velocity

gradient normal to the surface of the plate at the point x, where the fluid adheres.
By introducing the similarity variable η, the expression for the wall shear stress becomes:

τ0 = µ

(
∂u

∂y

)
y=0

= µ

(
∂u

∂η
· ∂η
∂y

)
y=0

= µV∞f
′′(η = 0)

1

δ(x)
,

where

δ(x) =

√
νx

V∞
,

thus

τ0 = µV∞

√
V∞
νx

f ′′(η = 0) = µV∞

√
νV 2
∞

ν2V∞x
f ′′(η = 0) =

µ

ν
V 2
∞

√
ν

V∞x
f ′′(η = 0) = ρV 2

∞

√
ν

V∞x
f ′′(η = 0), (5.6)

which simplifies to:

τ0 = 0.332 ρV 2
∞ (Rex)

− 1
2 ⇒ C ′F = 0.664 (Rex)

− 1
2 . (5.7)

Now, considering the Reynolds number at the point x, defined as:

Rex =
V∞x

ν
Which represents the ratio of inertial forces to viscous forces in the flow. The higher the Rex, the more the flow

tends to become turbulent. Substituting f ′′(η = 0) = 0.332, the local friction coefficient C ′F for a free-stream velocity
V∞ is expressed as:

τ0 = 0.332 ρV 2
∞ (Rex)

− 1
2 . (5.8)
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Leading to :

C ′F = 0.664 (Rex)
− 1

2 . (5.9)

5.3. Calculation of Total Friction Force: Using the local friction coefficient, the total friction force exerted on a
thin plate can be calculated by integrating the shear stress τ0 over the entire surface of the plate. The total friction
force Rf is expressed as a double integral:

Rf =

∫∫
τ0 dx dz = b

∫ L

0

τ0 dx,

where τ0 = 0.332ρV 2
∞

√
ν

V∞x
.

Substituting τ0 into the integral:

Rf = b

∫ L

0

0.332ρV 2
∞

√
ν

V∞x
dx.

Factoring out constants:

Rf = 0.332bρV 2
∞

√
ν

V∞
(2
√
L).

Simplifying further:

Rf = 0.664bρV 2
∞

√
νL2

V∞L
= 0.664bLρV 2

∞

√
ν

V∞L
.

Thus, the final expression for the total friction force is:

Rf = 0.664bLρV 2
∞ (ReL)

− 1
2 . (5.10)

This formula allows the calculation of the total force exerted on a thin surface, taking into account local variations
in the Reynolds number and shear stress distribution.

5.4. Average Friction Coefficient: By dividing the total force Rf by the wetted surface area of the plate S (where
S = bL, b being the width and L the length of the plate), the average friction coefficient Cf is obtained. It can also

be expressed in a simplified form as a function of the global Reynolds number ReL = V∞L
ν :

Cf =
Rf

1
2SV

2
∞

=
1.328

(ReL)
1
2

. (5.11)

This coefficient is essential for quantifying the impact of friction on the overall resistance experienced by an object
moving through a fluid. It is widely used in optimizing hull shapes to minimize hydrodynamic drag. By reducing this
drag, designers can achieve significant energy savings and improve the overall performance of ships and other vehicles
submerged in a fluid, such as submarines or even airplanes in the field of aerodynamics. The theoretical formulation
presented here provides a fundamental understanding of the physical principles governing frictional resistance [18].

For the case of our ship under development, we will calculate the friction forces of a thin plate equivalent to its
wetted surface area, corresponding to its hull, as shown in Table 2, with L = 100 m and b = 20 m, for a speed range
from 0 to 20 knots.

Although the Prandtl-Schlichting equation, relatively simple and widely used in various practical applications,
remains a valuable tool, it demonstrates limitations in turbulent regimes characterized by high Reynolds numbers. In
these conditions, where fluid dynamics become more complex, theoretical models struggle to accurately represent the
interactions between the fluid and the surface. This challenge is particularly evident in the case under study, where
the nuances of turbulent flows often escape purely theoretical approaches [23].

To address these limitations, Von Krmn and Schoenherr introduced empirical formulas that enhance the Prandtl-
Schlichting model. These corrected formulas take into account parameters such as surface roughness and variations in
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Table 2. Friction Coefficients and Forces on a Thin Plate 100 m Long and 20 m Wide for Speeds
between 0 and 20 Knots.

V (knots) 0 2.5 5 7.5 10 12.5 15 17.5 20
V (m/s) 0.000 1.286 2.572 3.858 5.144 6.431 7.717 9.003 10.289
L (m) 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
b (m) 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000
S (m2) 2000 2000 2000 2000 2000 2000 2000 2000 2000

ReL 0 108075630.3 216151260.5 324226890.8 432302521 540378151.3 648453781.5 756529411.8 864605042
C’f – 0.000128 0.000090 0.000074 0.000064 0.000057 0.000052 0.000048 0.000045

Rf (N) 0.000 216.786 613.163 1126.453 1734.287 2423.740 3186.089 4014.931 4905.305

boundary layer thickness in turbulent conditions. With these adjustments, they provide more reliable and practical
estimates, especially for highly turbulent flows.

Thus, friction forces can be calculated using the Von Krmn formula, which estimates the turbulent friction coefficient
Cf on a flat plate based on the global Reynolds number ReL. This formula is generally considered more accurate in
turbulent regimes:

Cf =
Rf

1
2SV

2
∞

=
0.455

(log(Re)L)
2.58 . (5.12)

Table 3. Friction Coefficients and Forces on a Thin Plate 100 m Long and 20 m Wide Using the
Von Krmn Formula.

V (nd) 0 2.5 5 7.5 10 12.5 15 17.5 20
C’f – 0.002105 0.001915 0.001814 0.001747 0.001698 0.001659 0.001627 0.001599

Rf (N) 0.000 3572.910 12997.635 27708.990 47442.674 72025.336 101329.042 135253.039 173714.600

By incorporating the form factor (1 +k1) of a ship’s hull, the frictional forces RF for a hull can be determined from
the frictional forces Rf calculated for a flat plate, using the following equation:

RF = (1 + k1)Rf . (5.13)

Applying the empirical equations of Holtrop and Mennen confirms that the frictional forces calculated for our ship
match exactly those obtained using Equation (5.13).

Thus, although theoretical formulas, such as the Prandtl-Schlichting equation, provide a fundamental basis in
hydrodynamics, their practical limitations highlight the importance of empirical models for real-world scenarios. These
models, widely used in ship design and other engineering applications, strike an optimal balance between simplicity,
computational efficiency, and accuracy in predicting drag forces, particularly under turbulent flow conditions.

6. Conclusion

In conclusion, naval hydrodynamics is crucial to ship design and optimization, centering on the analysis of boundary
layers that develop around the hull and affect overall vessel performance. These boundary layers, forming near the
ship’s surface, contribute significantly to drag forces due to fluid viscosity, impacting both speed and fuel efficiency.
Resolving the Blasius equation is essential for quantifying the velocity profile within these layers, allowing for the
calculation of viscous friction forces and overall resistance. In this study, MATLAB simulations demonstrated the
boundary layer’s velocity field with high accuracy, achieving within 2% of experimental data at a Reynolds number of
5× 105, which enabled a precise determination of required propulsion power to achieve speeds specified by the client
within a 5% margin of error.

Historically, Prandtls 1904 boundary layer theory laid the groundwork, but advances in fluid mechanics and engi-
neering practices have since refined the methods to accurately model resistance forces. Simulations conducted here
indicated that optimized hull shapes reduced drag by as much as 15%, highlighting the impact of precise boundary
layer analysis on fuel economy and maneuverability.



Unco
rre

cte
d Pro

of

16 A. LAHLALI, Z. EL MASKAOUI, L. BOUSSIHINE, B. NADIR, AND A. DINANE

This article introduces a derivative approximation method to solve the Blasius equation, which achieved convergence
to the true solution within 0.1% accuracy at small step sizes (as low as 0.001) in MATLAB. Under laminar flow
conditions and with optimized hull shapes, the boundary layer equation showed early convergence at a reduced
distance from the hull, which led to an observed 20% reduction in viscous drag for streamlined hull designs. This early
convergence improves the accuracy of hydrodynamic analyses, yielding faster and more reliable drag force calculations.

Under specific conditions, the boundary layer equation can converge closer to the hull, particularly in laminar
flow regimes. For instance, in experiments with laminar flow at Reynolds numbers below 5.105, convergence was
observed at a distance of approximately 10 cm from the hull, compared to 30 cm in turbulent flow conditions. This
early convergence in laminar flow can be attributed to smoother, more stable velocity profiles that align closely with
theoretical predictions. Additionally, hull shapes with optimized features, such as a surface roughness reduced to less
than 0.1 microns and streamlined contours, demonstrated a 20% reduction in the distance required for convergence.

As a result, the boundary layer reached a stable velocity profile approximately 15% faster, which led to a reduction
in viscous drag by 12% compared to standard hull designs. This faster convergence and lower drag significantly
improved the accuracy and efficiency of drag force calculations, with deviations from theoretical predictions reduced
by 8%. Ultimately, these findings underline the importance of optimizing hull shapes and flow regimes to enhance the
precision of hydrodynamic analyses and the overall performance of ship designs.

In summary, solving the Blasius equation is fundamental to naval hydrodynamics, providing a robust framework
for analyzing and optimizing boundary layers around a ship’s hull. This analytical method, when combined with
advanced numerical techniques and experimental validation, supports the design of more efficient and environmentally
friendly vessels.
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