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Abstract . “\

In this paper, the power series method is applied to fractional Lotka-Volterra equation, which is one of the most
famous competition models emerging in demography and economics. We obtain some power series solutions of the
governing equation and prove their convergence. In addition, we analyze the various types of competitive roles
depicted by this model through the truncated graphs of these power series solutions. From the graphs, we can
find that the fractional order affects the speed of population growth or decrease, and this effect can be seen as
continuous with respect to the order.
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1. INTRODUCTION

Nonlinear differential equations are important tools for describing complex phenomena in fields such as physics,
engineering, biology, and economics. One of them, the well known population model namely the logistic equation is
given by

W/ (t) = Au(t) — Bu(t), (1.1)

which is introduced by Verhulst in 1838 [22]. Due to the introduction of a nonlinear term, Eq. (1.1) effectively quenches
the unbounded growth in human population model proposed by Malthus [14] and alleviates the pessimistic prediction
of human fate brought about by Malthus’ prophecy [1, 23]. In addition, the predator-prey population model is used
to describe the growth rate of competing biological species. The most famous competition models are given by Lotka
and Volterra, who introduce two coupling constants C; and Cs to describe the interaction between two competitors
and transform the simple logistic equation into the following Volterra-Lotka coupled differential equations:

W = Ayu — Biu? + Chuv,

’ 2 (1.2)
v’ = Asv — Bov® + Covu,

where u and v are the population of two different biological species. This system of equations contains all fundamental
parameters that impact the rate of growth. Among them, A; represents the reproductive capacity of each species, B;
the niche capacity limitations related to the niche size, and C; the interaction with other species. The signs of C; and
C5 determine the type of competitive roles shown in Table 1 [16].

Fractional differential equations (FDEs), due to nonlocal and memory effects of fractional derivative and integral
[7, 12, 19, 20], are successfully used in various fields of natural science and engineering [6, 24-29]. Moreover, in recent
years, various forms of fractional logistic and Lotka-Volterra equations have been studied by many scholars using
different analytical and numerical methods [4, 5, 8, 11, 13, 15, 17, 18, 21]. Especially, Pareek et al. [18] obtained
the analytical approximate solution in the form of convergent infinite series for fractional deterministic Lotka-Volterra
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TABLE 1. Signs of C; and Cs determine the type of competitive roles

C1C5 Type Explanation
— —  Pure competition Occurs when both species suffer from each other’s existence
+ — Predator-prey Occurs when one of them serves as direct food to the other
+ + Mutualism Occurs in case of symbiosis or a win-win situation

. Occurs when one benefits from the existence of the other,
+0 Commensalism

who nevertheless remains unaffected
Occurs when one suffers from the existence of the other,
who is impervious to what is happening
00 Neutralism Occurs if there is no interaction whatsoever

-0 Amensalism

model by homotopy analysis method. Manohar et al. [15] used fractional reduced differential transform method to
solve two cases of the Lotka—Volterra model with the Caputo fractional order derivatives numerically. In this paper,
we study the following coupled fractional Volterra-Lotka equations:

D% = Aju — Biu? + Chuw,

) (1.3)
D% = Asv — Bov” + Covu,

by the power series method which is applied by Area and Nieto to study fractional logistic and Allee logistic equations
[2, 3]. We extended their work by applying this method to the coupled fractional Volterra-Lotka equations, and
obtained some novel analytical solutions that differ from the results in [4, 5, 8, 11, 13, 15, 17, 18, 21]. In addition,
we used these solutions with different fractional order to comparatively analyze all the types of competitive roles in
Table 1.

It should be noted that D denotes the following Caputo fractional derivative for an absolutely continuous function

ft):

1 ")
Df(t) = ds, 0<t, 0<a<l. 14
10 = Frea |, e o (14)
From the definition, we can get the Caputo fractional derivative of a constant is zero, and that of a power function is
I'(y+1) _
DM = ———————t77% 4> 1. 1.5
T(y—a+1) Y (1.5)

For other properties of the Caputo fractional derivative, we can refer to the monographs [7, 12, 19, 20]. The Gamma
function T'(z) = faoo e *t*~1dt is extensively used in this paper, and we can refer to some other important special
functions and their applications in [9].

The motivation of this paper is to extend the classical Volterra-Lotka coupled differential equations to their corre-
sponding fractional order forms, which can more accurately characterize the genetic effects and long-range dependencies
of population density changes. The main contributions of our work is the first application of power series method to
fractional Volterra-Lotka coupled differential equations and obtaining some analytical solutions with potential appli-
cation value. The rest of this paper is organized as follows. In Section 2, we apply the power series method to obtain
some convergent power series solutions and analyze the dynamic properties of these solutions graphically for the six
types of competitive role in Table 1. In Section 3, the conclutions and outlooks are presented.

2. METHODS AND RESULTS

In this section, we obtained some convergent power series solutions of Eq. (1.3) using the power series method, and
discussed all types of competitive roles listed in Table 1 through the graphs of these solutions.
an



CMDE Vol. * No. *, * pp. 1-8 3

Let us assume

=3 an(t™)", o(t) =Y ba(t™)", (2.1)
n=0 n=0

then

n

u? = i (Zajan,j)(ta)n, vt = i (ijbn,j)(ta)”, (2.2)

n=0 j=0 n=0 j=0

uv-Z(Za] n— J> )", UU—Z(ZZ) Gy j) . (2.3)

n=0 n=0

From Eq. (1.5), we can get

o & T((n+1a+1) e ET (et Dat ) -
D U*;W%Hrl(t ) , D U*%m@pﬂ(t ) . (24)

Substituting (2.1)-(2.4) into Eq. (1.3) and equating the coefficients of different powers of t* yields that

L((n+1)a+1)

Fna 1) @t = Aen = B1) ajany £ C1 ) abuy,

Jj=0 J=0

Mbn—&-l = A2bn — By ijbn_] + CQ Zbljan—ja

T(na+1)

from which, we can obtain the explicit expressions of a,, and b,. For k > 0, we have

I'(na+1) ( u =
apnt1 = —————(A1a, — B a;iQp—; +C a»bn,'),
1 L((n+1a+1) ' 1; T ljgo T

__Tlatl) o N oh S ba
bt = T s Ta 1) (A2b, szzzjobjbw +02]Z:job]aw),

with the initial conditions ag = u(0) and by = v(0). Therefore, the power series solutions of Eq. (1.3) are

[(na + 1)(t*)n+! " -
_ao—i—Z n+1 a+1) (A1a,n—Bl Z:ajan_j—FC'lZajbn_j),

+1)(t)m
_b0+z ni+1a+1) (Asb Bgabnj—FC’gaan ;)

Theorem 2.1. The power series solutions (2.7) are convergent in a neighborhood of t = 0.

(2.7)

Proof. Considering Eqgs. (2.6), we can obtain

I'(na+1
o] € i (o) 18213 el + 16313 bl )

=0 =0 (2.8)
T(na+1) ‘
il £ T a7y (el |+|B2|Z|b sl +1Ca1 3 Iyl 1)

7=0
From the properties of Gamma function, I'(§) is an increasing function for £ > 2. That is to say, if a positive integer
N, satisfies Noa+ 1> 2 and (N, — 1)a+ 1 < 2, then for n > N,,
F((n+1a+1) >T(na+1)>T(2) =1. (2.9)

(&)
ENE
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So % < 1 for arbitrary n > N,. When n < N,, the inequality 0.5 < T'(na + 1) < 1 holds, that is,
n+1)a+
_Lmatld) _ 9 Therefore, Eqs. (2.8) can be written as
T ((n+1)a+1)
n n
ansr] < M (Janl + Y lallan—i | + Y lasllbns1),
j=0 Jj=0
- i (2.10)
b1l < M (bl + 3 I3l lbn—sl + D Iosllan—s1)
3=0 3=0
where M = max{2|A;|, 2|B;|, 2|C;|}.
Consider another power series
P(t)=> pa(t™)", Q)= qu(t*)", (2.11)
n=0 n=0
where pg = |ao|, o = |bol, and
Pn+1 = M(pn + ijpn—j + ijQn—j>7 n >0, (212)
3=0 3=0
Int1 = M(qn + ZQan—j + Zijn—j); n = 0. (2.13)
§=0 §=0

Therefore, it is easily seen that |a,| < p, and |b,| < g, for n = 0,1,2,..., that is, the power series (2.11) are the
majorant series of (2.1). We next show that the power series (2.11) are convergent. By simple calculation, we can get

P(t) = po + Mt*(P(t) + P*(t) + P(H)Q(1)), (2.14)

Q(t) = qo + Mt*(Q(t) + Q*(t) + Q1) P(t)). (2.15)
Consider the following implicit function with respect to the independent variable t:

F(t,P,Q) = P — py — Mt*(P + P* + PQ), (2.16)
which are analytic in a neighborhood of (0, pg, o), and F(0,pg,q0) = 0, G(0,po,q0) = 0, %komo,qo) =1=#0.
Therefore, by implicit function theorem, the power series (2.11) are analytic in a neighborhood of ¢ = 0. It implies
that the power series solution (2.1) are convergent in a neighborhood of ¢ = 0. This completes the proof. O

What follows is an analysis of the types of competitive role listed in Table 1 based on the obtained power series
solutions. In order to draw some truncated graphs of the power series solutions (2.7), the first few terms of them are
given below:

ay = ﬁ (A1a0 — Bia2 + C’1a0b0)7 (2.18)
by = ﬁ (A2b0 — Babg + C’zboao)v |
4y — m <A1a1 — 2Bjagar + Cy(agh + boal))» (2.19)
by = m (A2b1 — 2Bsbobr 4+ Co(bpaq + aobl))’ |

(=)=
E)NE
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I'(2 1

az = (20 +1) <A1a2 — Bi(2apas + a?) + Cy(agbs + a1y + aQbO)),
T(3a+ 1) (2.20)
'(2a+1) ) .

= Aoby — By(2

bs I'(3a+1) ( 2b2 2(2b0ba + b7) + Ca(boas + bras + bgoto))7
I'(3 1

ag = Ba+1) <A1CL3 — 2By (apasz + araz) + Ci(agbs + a1be + azby + agbo))7
I'da+1) o
I'Ba+1 .

by = FE40¢ mn 1; (A2b3 — 2B5(bobs + b1ba) + Ca(boas + bias + baay + b?ﬂo)),
I'(4 1

as = FE5Z I 1; (A1a4 — Bi1(2apay + 2a1az + a3) + C1(aghs + a1bs + azbs + azby + a4b0)),
(4o +1) (2.22)

Q
bs = (5 +1) (A254 — Bs(2bgby + 2b1b3 + b%) + Co(bpay + brag + boas + bzay + b4a0)>.

Assuming that the initial values and related parameters are fixed, we mainly focus on how the signs of parameters C;
determine the interaction between two species. The following graphs represent the corresponding types of competitive
roles in Table 1. They are truncated graphs of the first six terms (n = 0,...,5) of power series solutions (2.7) in
these types. Figures 1 and 2 illustrate the dynamic behavior for the power series solution (2.7) for mutualism and
pure competition between two species with the same initial and parameters values, respectively. It can be seen that
the fractional order affects the speed of population growth or decrease, and this effect can be seen as continuous with
respect to order a. Therefore, we can choose an appropriate fractional order model based on real-world observation
data, rather than just having a single first-order model. Figures 3 to 6 reflect the trend of population changes for two
species with different initial and parameters values under the remaining four types in Table 1. From these graphs, it
can be seen that although the given initial and parameter values are not actual data, they roughly reflect the trend of
changes in the population of two species for the six types of competitive role in Table 1.

1.57

u u
0.5
0 T T T T 1
. - ; : - 0 0.1 02 03 0.4 0.5
0 0.2 0.4 0.6 0.8 1
p t
P ———— s — =015 — =030 — 0=045
e o= o= —— =060 — 0=0.75 —— =090

—— =060 —— a=0.75 —— a=0.90

FIGURE 1. Mutualism between two FIGURE 2. Pl}re c.ompetltlon be-
tween two species with ag = bg = 1,

species with ao = by =1, A; = B; = A; = B; =1, C; = —1 for different

C; = 1 for different fractional orders. .
fractional orders.



J. YU AND Y. FENG

w(1) |

u(t)
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FIGURE 5. Amensalism between
two species with ag = 0.2, by = 0.1,
AiiBi:LClifl,CQZOfOI‘
a = 0.60.

FIGURE 6. Neutralism between two
species with ag = 0.2, by = 0.1, 4; =
B; =1, C; =0 for a =0.90.

3. CONCLUSION

This paper extends the power series method to coupled nonlinear fractional ordinary differential equations. We
obtained the power series solution of fractional Lotka-Volterra equation and proved its convergence. All types of
competitive roles represented by the equation were analyzed through graphics. The introduction of fractional order
greatly enriches the discussion of competitive role for Lotka-Volterra equation. Although the signs of parameters C; for

(=)=
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the interaction between species determine the types of competitive roles shown in Table 1, this degree of determination
is also influenced by the fractional order. For the given two species with the fixed initial values (u(0) and v(0)) and
parameters (A;, B; and C;), fractional order can adjust the degree of conformity between the model and real data. In
addition, we believe that the present study will help us to further generalize the power series method to study more
nonlinear FDEs. Excitingly, there is a latest paper this year that systematically introduces the power series method
[10].
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