- [1] J. A. Appley, S. Devin, and D. W. Reynolds, Almost sure convergence of solutions of linear stochastic Volterra equations to nonequilibrium limits, J. Integ. Equ. Appl., 19(4) (2007), 405–437.
- [2] M. Asgari, Block pulse approximation of fractional stochastic integro-differential equation, Commun. Numer. Anal., 2014 (2014), 1–7.
- [3] A. A. Badr and H. S. El-Hoety, Monte-Carlo Galerkin approximation of fractional stochastic integro-differential equation, Math. Probl. Eng., 2012(1) (2012), 709106.
- [4] M. A. Berger and V. J. Mizel, Volterra equations with Itoˆ integrals, I, J. Integ. Equ., 2 (1980), 187–245.
- [5] P. A. Cioica and S. Dahlke, Spatial Besov regularity for semilinear stochastic partial differential equations on bounded Lipschitz domains, Int. J. Comput. Math., 89(18) (2012), 2443–2459.
- [6] I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math., 41(7) (1988), 909– 996.
- [7] H. Dehestani, Y. Ordokhani, and M. Razzaghi, A numerical technique for solving various kinds of fractional partial differential equations via Genocchi hybrid functions, RACSAM, 113 (2019), 3297–3321.
- [8] H. Dehestani, Y. Ordokhani, and M. Razzaghi, Fractional-order Genocchi-Petrov-Galerkin method for solving time-space fractional Fokker-Planck equations arising from the physical phenomenon, Inter. J. Appl. Comput. Math., 6(4) (2020), 1–31.
- [9] N. Engheta, On fractional calculus and fractional multipoles in electromagnetism, IEEE Trans. Antennas Propag. 44(4) (1996), 554.
- [10] S. Fomin, V. Chugunov, and T. Hashida, Application of fractional differential equations for modeling the anomalous diffusion of contaminant from fracture into porous rock matrix with bordering alteration zone, Transp. Porous. Med., 81 (2010), 187–205.
- [11] R. M. Ganji, H. Jafari, and S. Nemati, A new approach for solving integro-differential equations of variable order, J. Comput. Appl. Math., 379 (2020), 112946.
- [12] M. H. Heydari, M. R. Hooshmandasl, C. Cattani, and F. M. Maalek Ghaini, An efficient computational method for solving nonlinear stochastic Itoˆ integral equations: Application for stochastic problems in physics, J. Comput. Phys., 283 (2015), 148–168.
- [13] M. H. Heydari, M. R. Hooshmandasl, F. M. Maalek Ghaini, and C. Cattani, A computational method for solving stochastic Itˆo-Volterra integral equations based on stochastic operational matrix for generalized hat basis functions, J. Comput. Phys., 270 (2014), 402–415.
- [14] D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43(3) (2001), 525–546.
- [15] M. Khodabin, K. Maleknejad, and T. Damercheli, Approximate solution of the stochastic Volterra integral equations via expansion method, Int. J. Indus. Math., 6(1) (2014), 41–48.
- [16] M. Khodabin, K. Maleknejad, and F. Hosseini Shekarabi, Application of triangular functions to numerical solution of stochastic Volterra integral equations, IAENG Int. J. Appl. Math., 43(1) (2013), 1–9.
- [17] M. Khodabin, K. Maleknejad, M. Rostami, and M. Nouri, Interpolation solution in generalized stochastic exponential population growth model, Appl. Math. Modell., 36(3) (2012), 1023–1033.
- [18] R. C. Koeller, Applications of fractional calculus to the theory of viscoelasticity, J. Appl. Mech., 51(2) (1984), 299–307.
- [19] S. Mallat, A theory of multiresolution signal decomposition: the wavelet representation, IEEE Trans. Pattern Anal. Mach. Intell., 11(7) (1989), 674–693.
- [20] F. Mirzaee and E. Hadadiyan, A collocation technique for solving nonlinear stochastic Itˆo-Volterra integral equations, Appl. Math. Comput., 247 (2014), 1011–1020.
- [21] F. Mirzaee and N. Samadyar, Application of orthonormal Bernstein polynomials to construct a efficient scheme for solving fractional stochastic integro-differential equation, Optik, 132 (2017), 262–273.
- [22] F. Mirzaee, N. Samadyar, and S. F. Hoseini, Euler polynomial solutions of nonlinear stochastic Ito-Volterra integral equations, J. Comput. Appl. Math., 330(1) (2018), 574–585.
- [23] F. Mohammadi, A wavelet-based computational method for solving stochastic Ito-Volterra integral equations, J. Comput. Phys., 298 (2015), 254–265.
- [24] F. Mohammadi, Wavelet Galerkin method for solving stochastic fractional differential equations, J. Fract. Calc. Appl., 7(1) (2016), 73–86.
- [25] B. Oksendal, Stochastic Differential Equations, An Introduction with Applications, Fifth Edition, Springer-Verlag, New York, (1998).
- [26] K. B. Oldham, Fractional differential equations in electrochemistry, Adv. Eng. Softw., 41 (2010), 9–12.
- [27] K. Parand and M. Nikarya, Application of Bessel functions and spectral methods for solving differential and integro-differential equations of the fractional order, Appl. Math. Model., 38 (2014), 4137–4147.
- [28] P. Rahimkhani, A numerical method for Ψ-fractional integro-differential equations by Bell polynomials, Appl. Numer. Math., 207 (2025), 2447–253.
- [29] P. Rahimkhani, Numerical solution of nonlinear stochastic differential equations with fractional Brownian motion using fractional-order Genocchi deep neural networks, Commun. Nonlinear Sci. Numer. Simul., 126 (2023), 107466.
- [30] P. Rahimkhani and M. H. Heydari, Numerical investigation of ψ-fractional differential equations using wavelets neural networks, Comput. Appl. Math., 44(1) (2025), 1–18.
- [31] P. Rahimkhani and Y. Ordokhani, Approximate solution of nonlinear fractional integro-differential equations using fractional alternative Legendre functions, J. Comput. Appl. Math., 365 (2020), 112365.
- [32] P. Rahimkhani and Y. Ordokhani, Numerical investigation of distributed-order fractional optimal control problems via Bernstein wavelets, Optim. Control Appl. Methods, 42(1) (2021), 355–373.
- [33] P. Rahimkhani, Y. Ordokhani, and E. Babolian, A new operational matrix based on Bernoulli wavelets for solving fractional delay differential equations, Numer. Algorithms, 74 (2017), 223–245.
- [34] P. Rahimkhani, Y. Ordokhani, and E. Babolian, Fractional-order Bernoulli functions and their applications in solving fractional Fredholem-Volterra integro-differential equations, Appl. Nume. Math., 122 (2017), 66–81.
- [35] P. Rahimkhani, Y. Ordokhani, and E. Babolian, Müntz-Legendre wavelet operational matrix of fractional-order integration and its applications for solving the fractional pantograph differential equations, Numer. Algorithms, 77(4) (2018), 1283–1305.
- [36] P. Rahimkhani, Y. Ordokhani, and P. M. Lima, An improved composite collocation method for distributed-order fractional differential equations based on fractional Chelyshkov wavelets, Appl. Numer. Math., 145 (2019), 1–27.
- [37] J. Ren, Z. Sun, and W. Dai, New approximations for solving the Caputo-type fractional partial differential equations, Appl. Math. Model., 40(4) (2016), 2625–2636.
- [38] S. Sabermahani and Y. Ordokhani, A new operational matrix of Müntz-Legendre polynomials and Petrov-Galerkin method for solving fractional Volterra-Fredholm integro-differential equations, Comput. Methods Differ. Equ., 8 (2020), 408–423.
- [39] S. Sabermahani and Y. Ordokhani, Fibonacci wavelets and Galerkin method to investigate fractional optimal control problems with bibliometric analysis, J. Vib. Control., 27(15-16) (2021), 1778–1792.
- [40] S. Sabermahani, Y. Ordokhani, and P. Rahimkhani, Spectral methods for solving integro-differential equations and bibiliometric analysis, Topics in Integral and Integro-Differential Equations: Theory and Applications, (2021), 169–214.
- [41] Sh. Sharma, R. K. Pandey, and K. Kumar, Galerkin and collocation methods for weakly singular fractional integrodifferential equations, Iran. J. Sci. Technol. Trans. Sci., 43 (2019), 1649–1656.
- [42] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, 2nd edn, Springer, Berlin, (2002).
- [43] Z. Taheri, Sh. Javadi, and E. Babolian, Numerical solution of stochastic fractional integro-differential equation by the spectral collocation method, J. Comput. Appl. Math., 321 (2017), 336–347.
- [44] Y. H. X. Zhang and B. Tang, Homotopy analysis method for higher-order fractional integro-differential equations, Comput. Math. Appl., 62 (2011), 3194–3203.
|