تعداد نشریات | 44 |
تعداد شمارهها | 1,323 |
تعداد مقالات | 16,270 |
تعداد مشاهده مقاله | 52,954,470 |
تعداد دریافت فایل اصل مقاله | 15,625,042 |
Numerical solution of stochastic fractional integro-differential/ Itô-Volterra integral equations via fractional Genocchi wavelets | ||
Computational Methods for Differential Equations | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 07 بهمن 1403 اصل مقاله (1.49 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22034/cmde.2024.64161.2891 | ||
نویسندگان | ||
Parisa Rahimkhani1؛ Yadollah Ordokhani* 2؛ Pedro M Lima3 | ||
1Faculty of Science, Mahallat Institute of Higher Education, Mahallat, Iran. | ||
2Department of Mathematics, Faculty of Mathematical Sciences, Alzahra University, Tehran, Iran. | ||
3Centro de Matemática Computacional e Estocástica, Instituto Superior Técnico, Universidade de Lisboa, Portugal. | ||
چکیده | ||
In this research, a novel approach based on the fractional-order Genocchi wavelets (FGWs), inverse hyperbolic functions, and collocation technique is introduced for obtaining numerical solutions of stochastic fractional integro-differential equations (SFIDEs) and Itô-Volterra integral equations (IVIEs). Initially, we utilize the Laplace transform approach to approximate the Caputo fractional derivative. Then, the unknown solution is approximated via combination of the FGWs and inverse hyperbolic functions. We replace this approximation and its derivatives into the resulting stochastic equation (SE). By the Gauss-Legendre quadrature rule (GLQR) and collocation method, we achieve a system of nonlinear algebraic equations. The derived algebraic system can be readily solved through application of Newton’s iterative scheme. Also, we show the convergence of the mentioned scheme. Ultimately, several test problems are examined to demonstrate the applicability and effectiveness of the suggested technique. | ||
کلیدواژهها | ||
Fractional-order Genocchi wavelets؛ Fractional stochastic integro-differential equations؛ Laplace transform؛ Convergence analysis | ||
آمار تعداد مشاهده مقاله: 21 تعداد دریافت فایل اصل مقاله: 52 |