تعداد نشریات | 44 |
تعداد شمارهها | 1,323 |
تعداد مقالات | 16,270 |
تعداد مشاهده مقاله | 52,954,459 |
تعداد دریافت فایل اصل مقاله | 15,625,032 |
قابلیت دو روش رگرسیون و جنگل تصادفی برای تخمین منحنی نگهداری آب خاک با ایجاد توابع انتقالی شبهپیوسته | ||
نشریه دانش خاک و گیاه | ||
دوره 34، شماره 4، دی 1403، صفحه 15-36 اصل مقاله (2.05 M) | ||
شناسه دیجیتال (DOI): 10.22034/sps.2024.19180 | ||
نویسندگان | ||
رضا کیانی1؛ حسین بیات* 2 | ||
1گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران | ||
2گروه علوم خاک، دانشکده کشاورزی، دانشگاه بوعلی سینا | ||
چکیده | ||
تا کنون توابع انتقالی نقطهای و پارامتریک با روشهای زیادی برای تخمین منحنی نگهداری آب خاک (SWRC) استفاده شدهاند، اما از روش جنگل تصادفی (RF) با برخی متغیرهای ورودی تا کنون در هیچ مطالعهای برای ایجاد توابع انتقالی شبهپیوسته استفاده نشده است. تعداد 120 نمونه خاک از دو استان تهران و همدان برداشت و ویژگیهای فیزیکی آنها اندازهگیری گردید. تعداد 10 تابع انتقالی شبهپیوسته با روشهای رگرسیون خطی و RF ایجاد شد. از متغیرهای مکش آب خاک، بافت خاک، درصد رس و شن، جرم مخصوص ظاهری، میانگین و انحراف معیار هندسی قطر ذرات، و رطوبت در ظرفیت مزرعهای (FC) و نقطه پژمردگی دائم (PWP) در ترکیبهای مختلف برای تخمین SWRC استفاده شد. استفاده از مکش خاک بهعنوان تنها متغیر ورودی برای تخمین SWRC در روش رگرسیون خطی، مدلی با نتایج قابلقبول ایجاد کرد (R2 مراحل آموزش و معتبرسازی بهترتیب 675/0 و 674/0 بود). استفاده از درصد رس و شن بهعنوان تخمینگر موجب بهبود تخمین (5/1 تا 0/25 درصد) گردید. جرم مخصوص ظاهری موجب بهبود معنادار درستی تخمینها در دامنه 9/6 تا 1/13 درصد گردید. بر خلاف PWP، استفاده از FC موجب بهبود درستی تخمینها در دامنه 5/3 تا 4/24 درصد شد. توزیع خطا (RMSE) بر روی مثلث بافت خاک وابسته به نوع متغیرهای ورودی و روش ایجاد توابع بود. در تمام توابع شبهپیوسته، درستی تخمینها، بر مبنای RMSE، در روش RF بهطور معنادار و قابلتوجهی در دامنه 22 تا 46 درصد بیشتر از رگرسیون خطی بود. | ||
کلیدواژهها | ||
انحراف معیار هندسی؛ توابع انتقالی شبهپیوسته؛ جنگل تصادفی؛ رگرسیون خطی؛ رطوبت ظرفیت مزرعهای؛ میانگین هندسی قطر ذرات خاک | ||
مراجع | ||
Ahuja, L., Cassel, D., Bruce, R. & Barnes, B. (1989). Evaluation of spatial distribution of hydraulic conductivity using effective porosity data. Soil Science, 148, 404–411.
Akaike, H. (1974). New Look at the Statistical Model Identification. IEEE Transactions on Automatic Control, AC-19, 716-723.
Araya, S.N. & Ghezzehei, T.A. (2019). Using Machine Learning for Prediction of Saturated Hydraulic Conductivity and Its Sensitivity to Soil Structural Perturbations. Water Resources Research, 55, 5715-5737.
Bayat, H., Neyshabouri, M., Mohammadi, K. & Nariman-Zadeh, N. (2011). Estimating water retention with pedotransfer functions using multi-objective group method of data handling and ANNs. Pedosphere, 21, 107–114.
Bayat, H., Neyshaburi, M.R., Mohammadi, K., Nariman-Zadeh, N. & Irannejad, M. (2013a). Improving water content estimations using penetration resistance and principal component analysis. Soil and Tillage Research, 129, 83–92.
Bayat, H., Neyshaburi, M.R., Mohammadi, K., Nariman-Zadeh, N., Irannejad, M. & Gregory, A.S. (2013b). Combination of artificial neural networks and fractal theory to predict soil water retention curve. Computers and Electronics in Agriculture, 92, 92-103.
Børgesen, C.D. & Schaap, M.G. (2005). Point and parameter pedotransfer functions for water retention predictions for Danish soils. Geoderma, 127, 154–167.
Brady, N.C. & Weil, R.R. (2010). Elements of The Nature and Properties of Soils. Pearson Educational International Upper Saddle River, NJ.
Breiman, L. (1984). Classification and regression trees. Routledge, New York.
Breiman, L. (2001). Random forests. Machine learning, 45, 5-32.
Cueff, S., Coquet, Y., Aubertot, J.-N., Bel, L., Pot, V. & Alletto, L. (2021). Estimation of soil water retention in conservation agriculture using published and new pedotransfer functions. Soil and Tillage Research, 209, 104967.
Dane, J. & Hopmans, J.W. (2002). Water retention and storage. Pp.671-717. In: Dane, J. H. & Topp, G. G. (eds.) Methods of soil analysis. Part 4. Physical Methods. Soil Science Society of America, Book Series No. 5. Madison, WI.
Dexter, A.R., Czyz, E.A., Richard, G. & Reszkowska, A. (2008). A user-friendly water retention function that takes account of the textural and structural pore spaces in soil. Geoderma, 143, 243-253.
Ebrahimi, E., Bayat, H., Sadeghi, S., Fallah, M. & Jorreh, M. (2016). Using compression curve characteristics to estimate water content by the van Genuchten model. Iranian Journal of Soil and Water Research, 47, 217-228. (in Persian with English abstract)
Efron, B. & Tibshirani, R.J. (1993). An introduction to the bootstrap. Monographs on Statistics and Applied Probability. Chapman & Hall, CRC press, London.
Gee, G.W. & Or, D. (2002). Particle-size analysis. Pp. 255–293. In: Dane, J. H. & Topp, G. G. (eds.) Methods of soil analysis. Part 4. Physical Methods. Soil Science Society of America, Book Series No. 5. Madison, WI.
Grossman, R. & Reinsch, T. (2002). Bulk density and linear extensibility. Pp. 201-228. In: Dane, J. H. & Topp, G. G. (eds.) Methods of soil analysis. Part 4. Physical Methods. Soil Science Society of America, Book Series No. 5. Madison, WI.
Gunarathna, M.H.J.P., Sakai, K., Nakandakari, T., Momii, K. & Kumari, M.K.N. (2019a). Machine learning approaches to develop pedotransfer functions for tropical Sri Lankan soils. Water, 11, 1940.
Gunarathna, M.H.J.P., Sakai, K., Nakandakari, T., Momii, K., Kumari, M.K.N. & Amarasekara, M.G.T.S. (2019b). Pedotransfer functions to estimate hydraulic properties of tropical Sri Lankan soils. Soil and Tillage Research, 190, 109-119.
Haghverdi, A., Cornelis, W.M. & Ghahraman, B. (2012). A pseudo-continuous neural network approach for developing water retention pedotransfer functions with limited data. Journal of Hydrology, 442-443, 46-54.
Haghverdi, A., Öztürk, H.S. & Cornelis, W.M. (2014). Revisiting the pseudo continuous pedotransfer function concept: Impact of data quality and data mining method. Geoderma, 226-227, 31-38.
Haghverdi, A., Öztürk, H.S. & Durner, W. (2018). Measurement and estimation of the soil water retention curve using the evaporation method and the pseudo continuous pedotransfer function. Journal of Hydrology, 563, 251-259.
Hillel, D. (1998). Environmental Soil Physics: Fundamentals, Applications, and Environmental Considerations. Elsevier Academic Press, Amsterdam, San Diego.
Hillel, D. (2004). Introduction to Environmental Soil Physics. Elsevier Academic Press, Amsterdam, San Diego.
Jamshidi, M., Delavar, M.A., Taghizadehe-Mehrjerdi, R. & Brungard, C. (2019). Evaluating digital soil mapping approaches for 3D mapping of soil organic carbon. Iranian Journal of Soil Research, 33, 227-239. (in Persian with English abstract)
Khlosi, M., Alhamdoosh, M., Douaik, A., Gabriels, D. & Cornelis, W. (2016). Enhanced pedotransfer functions with support vector machines to predict water retention of calcareous soil. European Journal of Soil Science, 67, 276-284.
Kotlar, A.M., de Jong van Lier, Q. & de Souza Brito, E. (2020). Pedotransfer functions for water contents at specific pressure heads of silty soils from Amazon rainforest. Geoderma, 361, 114098.
Ließ, M., Glaser, B. & Huwe, B. (2012). Uncertainty in the spatial prediction of soil texture: comparison of regression tree and Random Forest models. Geoderma, 170, 70-79.
Merdun, H., Çınar, Ö., Meral, R. & Apan, M. (2006). Comparison of artificial neural network and regression pedotransfer functions for prediction of soil water retention and saturated hydraulic conductivity. Soil and Tillage Research, 90, 108-116.
Nemes, A., Rawls, W., Pachepsky, Y.A. & van Genuchten, M.T. (2006). Sensitivity analysis of the nonparametric nearest neighbor technique to estimate soil water retention. Vadose Zone Journal, 5, 1222-1235.
Neyshaburi, M.R., Bayat, H., Mohammadi, K., Nariman-Zadeh, N. & Irannejad, M. (2015). Improvement in estimation of soil water retention using fractal parameters and multiobjective group method of data handling. Archives of Agronomy and Soil Science, 61, 257-273.
Nguyen, P.M., Haghverdi, A., De Pue, J., Botula, Y.-D., Le, K.V., Waegeman, W. & Cornelis, W.M. (2017). Comparison of statistical regression and data-mining techniques in estimating soil water retention of tropical delta soils. Biosystems Engineering, 153, 12-27.
Pachepsky, Y., Rawls, W., Gimenez, D. & Watt, J. (1998). Use of soil penetration resistance and group method of data handling to improve soil water retention estimates. Soil and Tillage Research, 49, 117-126.
Pachepsky, Y.A. & Rawls, W. (1999). Accuracy and reliability of pedotransfer functions as affected by grouping soils. Soil Science Society of America Journal, 63, 1748-1757.
Pachepsky, Y.A., Rawls, W. & Lin, H. (2006). Hydropedology and pedotransfer functions. Geoderma, 131, 308-316.
Pachepsky, Y.A. & Rawls, W.J. (2004). Development of Pedotransfer Functions in Soil Hydrology. Elsevier Science.
Paul, R.K. (2006). Multicollinearity: Causes, Effects and Remedies. IASRI, New Delhi.
Rastgou, M. (2020). Comprehensive comparison of the methods of developing pedotransfer functions (PTFs) and development of new algorithms to predict soil water retention curve (SWRC) and soil hydraulic conductivity curve (SHCC). Ph. D. Thesis, Department of Soil Science and Engineering, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran. (in Persian with English abstract)
Rastgou, M., Bayat, H., Mansoorizadeh, M. & Gregory, A.S. (2020). Estimating the soil water retention curve: Comparison of multiple nonlinear regression approach and random forest data mining technique. Computers and Electronics in Agriculture, 174, 105502.
Rastgou, M., Bayat, H., Mansoorizadeh, M. & Gregory, A.S. (2022). Estimating soil water retention curve by extreme learning machine, radial basis function, M5 tree and modified group method of data handling approaches. Water Resources Research, 58, e2021WR031059.
Rawls, W.J., Gish, T.J. & Brakensiek, D.L. (1991). Estimating Soil Water Retention from Soil Physical Properties and Characteristics, Pp. 213-234. In: Stewart, B.A. (Ed.), Advances in Soil Science: Volume 16. Springer New York, New York, NY.
Rawls, W., Pachepsky, Y.A., Ritchie, J., Sobecki, T. & Bloodworth, H. (2003). Effect of soil organic carbon on soil water retention. Geoderma, 116, 61-76.
Romano, N. & Palladino, M. (2002). Prediction of soil water retention using soil physical data and terrain attributes. Journal of Hydrology, 265, 56-75.
Schaap, M.G., Leij, F.J. & van Genuchten, M.T. (2001). Rosetta: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of Hydrology, 251, 163–176.
Shirazi, M.A. & Boersma, L. (1984). A unifying quantitative analysis of soil texture. Soil Science Society of America Journal, 48, 142-147.
Svetnik, V., Liaw, A., Tong, C., Culberson, J.C., Sheridan, R.P. & Feuston, B.P. (2003). Random Forest: A Classification and Regression Tool for Compound Classification and QSAR Modeling. Journal of Chemical Information and Computer Sciences, 43, 1947-1958.
Szabó, B., Szatmári, G., Takács, K., Laborczi, A., Makó, A., Rajkai, K. & Pásztor, L. (2019). Mapping soil hydraulic properties using random-forest-based pedotransfer functions and geostatistics. Hydrology and Earth System Science, 23, 2615-2635.
Tafteh, A., Davatgar, N. & Sedaghat, A. (2022). Estimation of important points on soil water retention curve (SWRC): comparison experimental-physical models and data mining technique. Arabian Journal of Geosciences, 15, 968.
Tomasella, J., Pachepsky, Y., Crestana, S. & Rawls, W. (2003). Comparison of two techniques to develop pedotransfer functions for water retention. Soil Science Society of America Journal, 67, 1085-1092.
Tóth, B., Makó, A. & Toth, G. (2014). Role of soil properties in water retention characteristics of main Hungarian soil types. Journal of Central European Agriculture, 15, 137-153.
Touil, S., Degre, A. & Chabaca, M.N. (2016). Sensitivity analysis of point and parametric pedotransfer functions for estimating water retention of soils in Algeria. Soil, 2, 647.
Twarakavi, N.K., Šimůnek, J. & Schaap, M. (2009). Development of pedotransfer functions for estimation of soil hydraulic parameters using support vector machines. Soil Science Society of America Journal, 73, 1443-1452.
Ungaro, F., Calzolari, C. & Busoni, E. (2005). Development of pedotransfer functions using a group method of data handling for the soil of the Pianura Padano-Veneta region of North Italy: water retention properties. Geoderma, 124, 293-317.
Vereecken, H., Maes, J., Feyen, J. & Darius, P. (1989). Estimating the soil moisture retention characteristic from texture, bulk density, and carbon content. Soil Science, 148, 389–403.
Vereecken, H., Weynants, M., Javaux, M., Pachepsky, Y., Schaap, M. & Genuchten, M.T. (2010). Using pedotransfer functions to estimate the van Genuchten–Mualem soil hydraulic properties: A review. Vadose Zone Journal, 9, 795–820.
Verikas, A., Gelzinis, A. & Bacauskiene, M. (2011). Mining data with random forests: A survey and results of new tests. Pattern Recognition, 44, 330–349.
Warkentin, B.P. (1972). Use of the liquid limit in characterizing the clay soils. Canadian Journal of Soil Science, 52, 457–464.
Wiesmeier, M., Barthold, F., Blank, B. & Kögel-Knabner, I. (2011). Digital mapping of soil organic matter stocks using Random Forest modeling in a semi-arid steppe ecosystem. Plant and Soil, 340, 7-24.
Williams, J., Prebble, R., Williams, W. & Hignett, C. (1983). The influence of texture, structure and clay mineralogy on the soil moisture characteristic. Soil Research, 21, 15–32.
Wösten, J., Pachepsky, Y.A. & Rawls, W. (2001). Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics. Journal of Hydrology, 251, 123–150.
Zamani, P. (2011). Statistical Designs in Animal Science. Bu-Ali Sina University, Hamedan Press. (In Farsi). | ||
آمار تعداد مشاهده مقاله: 25 تعداد دریافت فایل اصل مقاله: 43 |