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Abstract
K-P equation is an important (2+1) - dimensional nonlinear PDE which has not only multi-solitons but also
has complete integrability. In order to describe the long waves that propagates with weak dispersion in the

direction of additional spatial variable y, Kadomstev and Petviashili formulated this model. In the literature,

many researchers are interested to propose and work on higher order nonlinear PDE’s possessing multi-solitons.
Two powerful methods employed by researchers are Hirota’s method to obtain multi-solitons and tanh− coth

method to obtain one soliton solutions. In our work, K-P equation of order ten is derived and using Hirota’s

method, its multi solitons are worked out. The derived equation is also treated with the tanh method. This article
emphasizes few bounded solutions to the equation in context. The main aim of the paper is to demonstrate the

generalization of the K-P equation using Hirota operators and to study corresponding multi-solitons. We discuss

few open problems for the proposed tenth order K-P equation.
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1. Introduction

The K-P equation is the (2+1) dimensional extension of KdV equation with one more spatial variable y which
has not only multi-solitons but also has complete integrability. Kadomstev and Petviashili formulated this model
to describe the long waves that propagates with weak dispersion in the direction of additional spatial variable y.
And in their work, they studied the stability of the soliton solution [16, 17]. Depending on the negative coefficient
(-1) and positive coefficient (+1) of uyy the K-P equation is classified as KP-I and KP-II equation. KP-I equation
governs the physical system possessing high surface tension whereas KP-II is used to describe the physical system
with weak surface tension. The K-P equation plays significant role in the allied fields like fluid dynamics, shallow
water waves, plasma physics, astrophysics and so on. Both KP-I and KP-II equations exhibits line soliton which
are generalized soliton solutions of KdV equation. KP-I exhibits lump soliton solution and KP-II possesses periodic
solution expressing optical solitons [1–4, 11]. In the vast literature, many methods substantiate such soliton solutions
to the nonlinear PDE to name a few : inverse scattering method, perturbation method, the tanh method, Adomian
decomposition method, the Hirota’s method, G′/G method, perturbation homotopy method, collocation method, Lie
symmetry method and many recent novel methods [5–10, 12, 13, 15, 18–26, 30].

Prominent researchers R. Hirota, J. Hietarinta, W. Malfliet, R. S. Johnson, A. M. Wazwaz and many more have
contributed to develop mainly Hirota’s method and tanh− coth method for multi-solitons through their works [13, 15,
16, 28, 30]. The Hirota’s method is one of the efficient method to deduce multi-solitons. And that can be achieved by
expressing the given differential equation in its bilinear form using Hirota operators [14, 15, 26]. The tanh method is
also one of the popular methods to find soliton solutions to the nonlinear PDE’s by expressing them as a finite series
expansion in terms of tanh [22–24].
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This article mainly focuses on computing certain bounded solutions to the tenth order K-P (tK-P) equation, in
particular soliton solutions. As K-P equation is integrable it admits multi solitons. In present work, we just give the
necessary condition of integrability by finding multi-solitons of the derived equation. We also employed tanh method
to tK-P equation to ensure the one soliton solution of Hirota’s direct method. The work is carried out sequentially
as follows : In section 2, we derive tK-P using Hirota Operators. In section 3, we obtain its multi-solitons using the
Hirota’s Direct method and Hirota’s one-soliton solution is reconfirmed through the tanh method. In section 4, few
2d and 3d plots of the derived solutions are plotted and in the concluding section, open problems are discussed.

2. Derivation of the Generalized Tenth Order K-P Equation

In this section we derive K-P equation of tenth order (tK-P).
The K-P equation reads as [17, 30]

(ut + 6uux + uxxx)x ± uyy = 0. (2.1)

By substituting u = wx in (2.1) and integrating twice with respect to x it can be reduced into Hirota bilinear form(
DxDt +D4

x ±D2
y

)
(f · f) = 0, (2.2)

where u and f are related by

u = 2
∂2

∂x2
log f(x, t, y). (2.3)

We note that order of the K-P Equation (2.1) is 4 and its corresponding bilinear form also has order 4. In order to
study the effect of increasing order of bilinearity on multi-soliton, we generalize (2.2) to 10th order given by:

P (D)(f · f) =
(
DxDt +D4

x + αD6
x + βD8

x + γD10
x ±D2

y

)
(f · f) = 0, (2.4)

where α, β and γ are real constants.
By Hirota operators [15] (2.4) is equivalent to

[ffxt − fxft] + [ff4x − 4fxf3x + 3fxxfxx] + α
[
f6xf − 6f5xfx + 15f4xf2x − 10fxxxfxxx

]
+ β

[
ff8x − 8f7xfx + 28f6xfxx − 56f5xf3x + 35f4xf4x

]
+ γ
[
ff10x − 10f9xfx + 45f8xf2x

− 120f7xf3x + 210f6xf4x − 126f5xf5x
]
±
[
fyyf − fyfy

]
= 0.

(2.5)

Using the relation (2.3) and the Hirota’s operators [15, 26] in (2.4) gives us the desired tK-P equation as

uxt + u4x + 6(uuxx + u2x) + α
[
u6x + 15(uu4x + 2uxu3x + u2xx) + 45(2uu2x + u2uxx)

]
+ β

[
u8x + 28(uu6x + 2u5xux) + 98uxxu4x + 70u23x + 210(u2u4x + 4uuxu3x)

+ 420(uu2xx + u3uxx + 3u2u2x + u2xu
2
x)
]

+ γ
[
u10x + 45(uu8x + 2u7xux) + 255u6xuxx

+ 210(2u5xu3x + u24x) + 4410uuxxu4x + 1575u3xx + 630(u2u6x + 4uuxu5x + 2u4xu
2
x)

+ 3150(2uxuxxu3x + uu23x + u3u4x + 6u2uxu3x + 3u2u2xx + 6uu2xuxx) + 4725(4u3u2x + u4uxx)
]
± uyy = 0.

(2.6)

As we are focusing on bounded solutions to (2.6), in the ensuing section we compute multi-soliton solutions and
reconfirm the one soliton solution by the tanh method.

3. Solution by Hirota’s method and the tanh method

In this section, we deduce that multi-solitons exists for the derived tK-P Equation (2.5) using Hirota’s direct
method. In order to deduce the soliton solution, the unknown function f has to be determined, where the solution

u(x, t, y) and f(x, t, y) are related by the transformation, u = 2
∂2

∂x2
log f(x, t, y).

And we assume that f = 1 +

∞∑
n=1

εnfn, where f1, f2 . . . , are yet to be found. For more details please see [12–15, 30].
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3.1. One soliton solution. For one soliton solution , consider the bilinear form (2.4) and observing the fact that
for one soliton solution fk = 0, k ≥ 2.

We obtain f(x, t, y) = 1 + εf1 = 1 + εeθ where, θ = kx + my − ct, ε, k, c and m are real constants. Using this
f(x, t, y) in (2.5), we have

ε[−kc+ k4 + αk6 + βk8 + γk10 ±m2]eθ = 0.

This implies, c =
k4 + αk6 + βk8 + γk10 ±m2

k
.

Hence the one soliton solution of (2.6) is

u = 2
∂2

∂x2
log f(x, t, y)

=
k2

2
sech2

(
kx+my − ct

2

)
.

(3.1)

3.2. Two Soliton Solution. For two soliton solution, consider the bilinear form (2.4) and using the fact that for
two soliton solution fk = 0, k ≥ 3.

We obtain, f(x, t, y) = 1 + εf1 + ε2f2.

where f1 = eθ1 + eθ2 ,

f2 = a12e
θ1+θ2 , θi = kix+miy − cit, (i = 1, 2),

ki, ci and mi are real constants and the coupling constant a12 to be determined.
By considering P (D)(f · f) = 0 and equating the the coefficients of ε2, we obtain(

DxDt +D4
x + αD6

x + βD8
x + γD10

x ±D2
y

)
(1 · f2 + f1 · f1 + f2 · 1) = 0.

Implies,
(
DxDt +D4

x + αD6
x + βD8

x + γD10
x ±D2

y

)
(2(f2 · 1) + (f1 · f1)) = 0.

Which results in ,

a12 = −
[
− (k1 − k2)(c1 − c2) + (k1 − k2)4 + α(k1 − k2)6 + β(k1 − k2)8 + γ(k1 − k2)10 ± (m1 −m2)2

][
− (k1 + k2)(c1 + c2) + (k1 + k2)4 + α(k1 + k2)6 + β(k1 + k2)8 + γ(k1 + k2)10 ± (m1 +m2)2

] (3.2)

Therefore, f can be expressed as

f = 1 + ε
(
eθ1 + eθ2

)
+ ε2a12e

θ1+θ2 .

Using the above f in u = 2
∂2

∂x2
log f(x, t, y) is the two soliton solution of (2.6).

3.3. Three Soliton solution. In this subsection, we examine the existence of three soliton solution of (2.4) For that,
we consider the auxilliary function

f = 1 + εf1 + ε2f2 + ε3f3 (3.3)

where, f1 = eθ1 + eθ2 + eθ3 ,

f2 = a12e
θ1+θ2 + a13e

θ1+θ3 + a23e
θ2+θ3 ,

f3 = b123 e
θ1+θ2+θ3 , θi = kix+miy − cit, i = 1, 2, 3.

(3.4)

and b123 is a coupling constant.
In the existence of multi-solitons the constant b123 plays a crucial role. If it can be expressed as product in terms

of a12, a23 and a13 satisfying the three soliton condition, then one can conclude that the nonlinear partial differential
equation possesses multi-soliton solutions [12, 14, 15, 30].
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We compute,

aij = −
[
− (ki − kj)(ci − cj) + (ki − kj)

4 + α(ki − kj)
6 + β(ki − kj)

8 + γ(ki − kj)
10 ± (mi −mj)

2
][

− (ki + kj)(ci + cj) + (ki + kj)4 + α(ki + kj)6 + β(ki + kj)8 + γ(ki + kj)10 ± (mi +mj)2
] , (3.5)

where 1 ≤ i < j ≤ 3, ki, ci and mi are real constants.
By considering P (D)(f · f) = 0 and equating the coefficients of ε3, we obtain,(

DxDt +D4
x + αD6

x + βD8
x + γD10

x ±D2
y

)
(1 · f3 + f1 · f2 + f2 · f1 + f3 · 1) = 0. (3.6)

After substituting the values of f1, f2 and f3 from (3.4) and (3.5) into (3.6) results in,

b123 = −a12P (k3 − k1 − k2) + a13P (k2 − k1 − k3) + a23P (k1 − k2 − k3)

P (k1 + k2 + k3)
(3.7)

Now, computing P (D)(f1 · f3 + f3 · f1 + f2 · f2) = 0, with the condition fn = 0, n ≥ 4, we obtain,

b123 = a12a23a31. (3.8)

From (3.7) and (3.8), it follows that,

−a12P (k3 − k1 − k2) + a13P (k2 − k1 − k3) + a23P (k1 − k2 − k3)

P (k1 + k2 + k3)
= a12a23a31. (3.9)

Further, simplifying the above Equation (3.9), results in the three soliton condition, given by

P (k1 − k2)P (k1 + k3)P (k2 + k3)P (k3 − k1 − k2)

+ P (k1 − k3)P (k1 + k2)P (k2 + k3)P (k2 − k1 − k3)

+ P (k2 − k3)P (k1 + k2)P (k1 + k3)P (k1 − k2 − k3)

= P (k1 − k2)P (k2 − k3)P (k1 − k3)P (k1 + k2 + k3).

(3.10)

Hence,

f = 1 + eθ1 + eθ2 + eθ3 + a12e
θ1+θ2 + a13e

θ1+θ3 + a23e
θ2+θ3 + a12a13a23 e

θ1+θ2+θ3 .

Using the above f in u = 2
∂2

∂x2
log f(x, t, y) is the three soliton solution to (2.6).

The higher order soliton solutions can be obtained in analogous way. Thus, we arrive at the conclusion that the
proposed tK-P equation admits multi-solitons.

3.4. The Tanh method. This sub section is devoted to the tanh method which reconstructs the one soliton solution
that is obtained from the Hirota’s method. The basic idea of tanh method is to express the given PDE into an ODE
by suppressing multi-variables by a single variable. And expressing the solution by the powers of tanh. As it exhibits
auto truncation of the series, it is handy to treat the complicated nonlinear PDE by this method. [22–24, 29, 30].

By introducing the variable z = kx+my−ct and denoting u(x, t, y) = U(z) then the PDE (2.6) can be transformed
to the following ODE;

(−kc±m2)Uzz + k4U4z + 6k2(UUzz + U2
z ) + α[k6U6z + 15k4(UU4z + 2UzU3z + U2

zz)

+ 45k2(U2Uzz + 2UU2
z )] + β[k8U8z + 28k6(UU6z + 2UzU5z) + 98k6UzzU4z + 70k6U2

3z

+ 210k4(U2U4z + 4UUzU3z) + 420(k4UUzz + k2UzzU
3 + 3k2U2U2

z + k2UzzU
2
z )]

+ γ[k10U10z + 45k8(UU8z + 2UzU7z) + 255k8UzzU6z + 210k8(2U3zU5z + U2
4z) + 4410k6UUzzU4z

+ 1575k6U3
zz + 630(k6U2U6z + 2k6U2

zU4z + 4k6UUzU5z) + 4725k2(U4Uzz + 4U3U2
z )

+ 3150(2k6UzUzzUzzz + k6UU2
3z + k4U3U4z + 6k4U2UzU3z + 3k4U2U2

zz + 6k4UU2
zUzz)] = 0,

(3.11)

where Uz = DzU.
Now we solve (3.11) using the tanh method. The stage of auto truncation can be determined by equating the

exponents of higher derivative and the highest power of nonlinear terms of the differential equation.
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So, by balancing the highest order term U10z and the highest power nonlinear term UzzU6z

M + 10 = 2M + 8.

We obtain

M = 2.

Hence, we consider

U(Y ) =

2∑
k=0

akY
k, where Y = tanh

z

2
.

Using the above in the ODE (3.11) we get a1 = 0 and by fixing a0 =
k2

2
and a2 = −k

2

2
the solution is

U =
k2

2

[
1 − tanh2

(z
2

)]
=
k2

2
(1 − Y 2).

Now, we deduce that the velocity c of the soliton solution to (3.11) is same as the velocity c in Hirota’s one soliton.
For that we simplify the terms of the ODE (3.11) as follows ;

• (−kc±m2)Uzz + k4U4z + 6k2(UUzz + U2
z ) =

k2

4
[−kc±m2 + k4](3Y 2 − 1)(1 − Y 2);

• k6U6z + 15k4(UU4z + 2UzU3z + U2
zz) + 45k2(U2Uzz + 2UU2

z ) =
k8

4
(3Y 2 − 1)(1 − Y 2);

• k8U8z + 28k6(UU6z + 2UzU5z) + 98k6UzzU4z + 70k6U2
3z + 210k4(U2U4z + 4UUzU3z)

+ 420(k4UUzz + k2UzzU
3 + 3k2U2U2

z + k2UzzU
2
z ) =

k10

4
(3Y 2 − 1)(1 − Y 2);

• k10U10z + 45k8(UU8z + 2UzU7z) + 255k8UzzU6z + 210k8(2U3zU5z + U2
4z) + 4410k6UUzzU4z

+ 1575k6U3
zz + 630(k6U2U6z + 2k6U2

zU4z + 4k6UUzU5z) + 4725k2(U4Uzz + 4U3U2
z )

+ 3150(2k6UzUzzUzzz + k6UU2
3z + k4U3U4z + 6k4U2UzU3z + 3k4U2U2

zz + 6k4UU2
zUzz)

=
k12

4
(3Y 2 − 1)(1 − Y 2).

Using this simplified terms in the ODE (3.11), we obtain

c =
k4 + αk6 + βk8 + γk10 ±m2

k
.

Hence the solution to (2.6) is

u =
k2

2
sech2

(
kx− ct+my

2

)
with

c =
k4 + αk6 + βk8 + γk10 ±m2

k
;

which agrees with the one-soliton solution in section (3.1). Thus, we described the soliton solution to the tK-P equation
using two different methods namely the Hirota’s method and the tanh method.
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4. Plots of solutions

In this section, we plot few graphs of the solutions that are given in the previous sections for different values and
we conclude by highlighting few open problems.

(1) Plots for one soliton solutions (1ss) of Equation (2.4) by Hirota’s method.
For 1ss of (2.4), we have chosen the particular values as :
ε = 1, k = 1, α = β = γ = 1 and m = 1 then f = 1 + exp(x+ y − t).

Case (i) : For t=0 .
Maple code :
> plot3d((1/2) ∗ sech((x+ y) ∗ (1/2))2, y = −10..10, x = −10..10)

Figure 1. One soliton solution with the particular choices ε = 1, k = 1, α = β = γ = 1 and m = 1, t = 0.

Case (ii) : For y=0 .
Maple code :
> plot3d((1/2) ∗ sech((x− 3 ∗ t) ∗ (1/2))2, t = −10..10, x = −10..10)

Figure 2. One soliton solution with the particular choices ε = 1, k = 1, α = β = γ = 1 and m = 1,
y = 0, c = 3.

Case (iii) : For y=0, t=0 .
Maple code :
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> plot((1/2) ∗ sech((1/2) ∗ x)2, x = −10..10)

Figure 3. One soliton solution with the particular choices ε = 1, k = 1, α = β = γ = 1 and m = 1,
y = 0 and t = 0.

(2) Plots for two soliton solutions (2ss) of Equation (2.4) by Hirota’s method.
For the following particular choices :

α = 1, β = 1, γ = 1, k1 = 1, k2 = 2,m1 = 1 and m2 = 2 we have c1 = 3, c2 = 678 and a12 ≈ 0.0104.
Case (i) : y=0

Maple code :
> plot3d(2 ∗ (exp(x− 3 ∗ t) + 4 ∗ exp(2 ∗x− 678 ∗ t) + (0.104e− 1 ∗ 9) ∗ exp(3 ∗x− 681 ∗ t))/(1 + exp(x− 3 ∗ t) +
exp(2∗x−678∗ t)+0.104e−1∗exp(3∗x−681∗ t))−2∗(exp(x−3∗ t)+2∗exp(2∗x−678∗ t)+(0.104e−1∗3)∗
exp(3∗x−681∗t))2/(1+exp(x−3∗t)+exp(2∗x−678∗t)+0.104e−1∗exp(3∗x−681∗t))2, x = −6..6, t = −2..5).

Figure 4. Two soliton solution with α = 1, β = 1, γ = 1, k1 = 1, k2 = 2,m1 = 1, y = 0 and m2 = 2,
c1 = 3, c2 = 678 and a12 ≈ 0.0104.
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Case (ii) : t=0 .
Maple code :
> plot3d(2 ∗ (exp(x + y) + 4 ∗ exp(2 ∗ x + 2 ∗ y) + (0.104e − 1 ∗ 9) ∗ exp(3 ∗ x + 3 ∗ y))/(1 + exp(x + y) +
exp(2 ∗ x + 2 ∗ y) + 0.104e − 1 ∗ exp(3 ∗ x + 3 ∗ y)) − 2 ∗ (exp(x + y) + 2 ∗ exp(2 ∗ x + 2 ∗ y) + (0.104e − 1 ∗
3)∗exp(3∗x+3∗y))2/(1+exp(x+y)+exp(2∗x+2∗y)+0.104e−1∗exp(3∗x+3∗y))2, x = −8..8, y = −1..5.5)).

Figure 5. Two soliton solution with α = 1, β = 1, γ = 1, k1 = 1, k2 = 2,m1 = 1, t = 0 and m2 = 2,
c1 = 3, c2 = 678 and a12 ≈ 0.0104.

Case (iii) : t=0, y=0 .
Maple code :
> plot(2∗(exp(x)+4∗exp(2∗x)+(0.104e−1∗9)∗exp(3∗x))/(1+exp(x)+exp(2∗x)+0.104e−1∗exp(3∗x))−2∗
(exp(x)+2∗exp(2∗x)+(0.104e−1∗3)∗exp(3∗x))2/(1+exp(x)+exp(2∗x)+0.104e−1∗exp(3∗x))2, x = −8..8).

Figure 6. Two soliton solution with α = 1, β = 1, γ = 1, k1 = 1, k2 = 2,m1 = 1, t = 0, y = 0 and
m2 = 2, c1 = 3, c2 = 678 and a12 ≈ 0.0104.
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5. Conclusion

Summing up, we derived tenth order K-P equation and discussed its multi-solitons by applying Hirota’s Direct
method. Also, we have employed the tanh method to obtain soliton solution which agreed with the one-soliton of
Hirota’s method.

In addition to the multi-solitons that are computed, it will be interesting to workout other types of solutions
such as rational, singular, shock wave and periodic wave solutions to tK-P equation. Studying tK-P equation in a
coupled system by applying complex transform, namely, u(x, y, t) = p(x, y, t)+iq(x, y, t) and computing their solutions
is also open. The present work establishes the existence of multi-solitons to tK-P equation which is only a necessary
condition for its integrability [27]. So, whether tK-P equation is integrable or not will be one more open problem.
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