تعداد نشریات | 45 |
تعداد شمارهها | 1,375 |
تعداد مقالات | 16,892 |
تعداد مشاهده مقاله | 54,387,575 |
تعداد دریافت فایل اصل مقاله | 17,078,395 |
مکان یابی اشیاء هوشمند با الگوریتم بهبود یافته IDVHOP و الگوریتم بهینه سازی گرگ خاکستری | ||
مجله مهندسی برق دانشگاه تبریز | ||
دوره 55، شماره 1 - شماره پیاپی 111، خرداد 1404، صفحه 55-65 اصل مقاله (812.75 K) | ||
نوع مقاله: علمی-پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/tjee.2025.63880.4902 | ||
نویسندگان | ||
Nazbanoo Farzaneh* 1؛ Enciye Farmanbar2 | ||
1گروه کامپیوتر - دانشگاه بین المللی امم رضا (ع) مشهد ایران | ||
2گروه کامپیوتر دانشگده مهندسی دانشگاه بین المللی امام رضا (ع) مشهد ایران | ||
چکیده | ||
حسگرهای اینترنت اشیا و شبکههای حسگر بیسیم برای ارائه اطلاعات، مانند اطلاعات جاده، نیاز به مکان یابی دقیق دارند. نصب مکان یاب بر روی تمامی گره ها و سنسورها بسیار پرهزینه است و به همین دلیل مکان یابی غیرمستقیم انجام می شود. یکی از روش های مکان یابی کم هزینه، الگوریتم DVHop است. به دلیل سادگی الگوریتم DVHop، زمان اجرای آن زیاد نیست. به همین دلیل مصرف انرژی زیادی را مصرف نمی کند و یک الگوریتم کم هزینه محسوب می شود. یکی از چالش های روش DVHop خطای قابل توجه آن در مکان یابی است. برای حل این مشکل، در مقاله حاضر، یک سیستم مکان یاب هوشمند با استفاده از الگوریتم بهبود یافته DVHop و الگوریتم بهینه سازی وال برای تخمین موقعیت اشیا و حسگرها ارائه شده است. روش پیشنهادی دارای سه مرحله اصلی برای مکان یابی هوشمند است. آزمایشها نشان داد که روش پیشنهادی نسبت به الگوریتمهای PSO، WOA، GWO و HHO خطای مکان یابی کمتری دارد و به دلیل انحراف استاندارد کمتر در بومیسازی خطا، از پایداری بالایی برخوردار است. در مقایسه با DVHop، PSODVHop، GSODVHop و DEIDVHop، روش پیشنهادی خطاها را به ترتیب 1.73، 1.60، 1.28 و 1.13 برابر کاهش می دهد. | ||
کلیدواژهها | ||
اینترنت اشیاء؛ الگوریتم DVHop؛ مکان یابی؛ الگوریتم بهینه سازی وال | ||
مراجع | ||
[1] M. Faris, M. N. Mahmud, M. F. M. Salleh, and A. Alnoor, "Wireless sensor network security: A recent review based on state-of-the-art works," International Journal of Engineering Business Management, vol. 15, p. 18479790231157220, 2023. [2] K. K. Gola, M. Dhingra, B. Gupta, and R. Rathore, "An empirical study on underwater acoustic sensor networks based on localization and routing approaches," Advances in Engineering Software, vol. 175, p. 103319, 2023. [3] Y. Wu, R. Chen, W. Fu, W. Li, and H. Zhou, "CWIWD-IPS: A crowdsensing/walk-surveying inertial/Wi-Fi data-driven indoor positioning system," IEEE Internet of Things Journal, vol. 10, no. 10, pp. 8786-8798, 2023. [4] H. Sun, D. Wang, H. Li, and Z. Meng, "An improved DV-Hop algorithm based on PSO and Modified DE algorithm," Telecommunication Systems, vol. 82, no. 3, pp. 403-418, 2023. [5] M. K. Mohanty, P. K. G. Thakurta, and S. Kar, "Efficient sensor node localization in precision agriculture: an ANN based framework," OPSEARCH, 2023/02/08 2023, doi: 10.1007/s12597-023-00625-4. [6] K. Sathish, R. C. Venkata, R. Anbazhagan, and G. Pau, "Review of localization and clustering in USV and AUV for underwater wireless sensor networks," in Telecom, 2023, vol. 4, no. 1: MDPI, pp. 43-64. [7] A. Mahfozi and Y. Darmani, "A Trust and Energy-based routing framework for the IoT network," TABRIZ JOURNAL OF ELECTRICAL ENGINEERING, 2023. [8] M. Parandeh and S. Aghdasi, "Position-based Energy-Efficient Data Forwarding Protocol for Visual Sensor Networks," TABRIZ JOURNAL OF ELECTRICAL ENGINEERING, vol. 47, no. 1, pp. 29-38, 2017. [9] P. Yadav and S. C. Sharma, "A systematic review of localization in WSN: Machine learning and optimization‐based approaches," International journal of communication systems, vol. 36, no. 4, p. e5397, 2023. [10] P. Singh, P. Singh, N. Mittal, U. Singh, and S. Singh, "An optimum localization approach using hybrid TSNMRA in 2D WSNs," Computer Networks, vol. 226, p. 109682, 2023. [11] A. H. M. Hashim et al., "Application of ANFIS and ANN for Partial Discharge Localization in Oil Through Acoustic Emission," IEEE Transactions on Dielectrics and Electrical Insulation, vol. 30, no. 3, pp. 1247-1254, 2023. [12] I. Bizon, A. Nimr, P. Schulz, M. Chafii, and G. P. Fettweis, "Blind transmitter localization using deep learning: a scalability study," in 2023 IEEE Wireless Communications and Networking Conference (WCNC), 2023: IEEE, pp. 1-6. [13] Y. Cao and J. Xu, "DV-Hop-based localization algorithm using optimum anchor nodes subsets for wireless sensor network," Ad Hoc Networks, vol. 139, p. 103035, 2023. [14] X. Wu, , L. Zhao, , X. Zhu, and "Efficient semidefinite solutions for TDOA-based source localization under unknown PS," vol. 91, p. 101783, 2023. [15] Y. Li, , others, and "Research on compression sensing positioning algorithm of indoor complex environment visible light indoor based on hybrid APIT," vol. 2022, 2022. [16] S. Nematzadeh et al., "Maximizing coverage and maintaining connectivity in WSN and decentralized IoT: an efficient metaheuristic-based method for environment-aware node deployment," vol. 35, pp. 611-641, 2023. [17] J. Chen et al., "A Neighborhood Grid Clustering Algorithm for Solving Localization Problem in WSN Using Genetic Algorithm," vol. 2022, 2022. [18] G. Farjamnia, Y. Gasimov, C. Kazimov, and M. hashemi, "A Survey of DV-Hop Localization Methods in Wireless Sensor Networks," 1399. [19] S. Mirjalili and A. Lewis, "The Whale Optimization Algorithm," Advances in Engineering Software, vol. 95, pp. 51-67, 2016/05/01/ 2016, doi: https://doi.org/10.1016/j.advengsoft.2016.01.008. [20] K. V. Lopes, H. R. Santos, L. N. Mendonça, J. P. Pereira, and D. S. Pires, "COMPARATIVE STUDY OF METAHEURISTICS BASED ON SWARM INTELLIGENCE: WHALE OPTIMIZATION ALGORITHM AND PARTICLE SWARM OPTIMIZATION," in XL Ibero-Latin American Congress on Computational Methods in Engineering, 2019, vol. 1, no. 01. [21] S. Gao and Y. Ma, "A Multi-Objective Optimization Framework That Incorporates Interpretable CatBoost and Modified Slime Mould Algorithm to Resolve Boiler Combustion Optimization Problem," Biomimetics, vol. 9, no. 11, p. 717, 2024. [Online]. Available: https://www.mdpi.com/2313-7673/9/11/717. [22] J. Fé, S. D. Correia, S. Tomic, and M. Beko, "Swarm optimization for energy-based acoustic source localization: A comprehensive study," Sensors, vol. 22, no. 5, p. 1894, 2022. [23] Y. Lin, Z. Zhang, and H. E. Najafabadi, "Underwater source localization using time difference of arrival and frequency difference of arrival measurements based on an improved invasive weed optimization algorithm," IET Signal Processing, vol. 16, no. 3, pp. 299-309, 2022. [24] R.-B. Wang, W.-F. Wang, L. Xu, J.-S. Pan, and S.-C. Chu, "Improved DV-Hop based on parallel and compact whale optimization algorithm for localization in wireless sensor networks," Wireless Networks, vol. 28, no. 8, pp. 3411-3428, 2022. [25] T. K. Mohanta and D. K. Das, "Improved DV-Hop localization algorithm based on social learning class topper optimization for wireless sensor network," Telecommunication Systems, vol. 80, no. 4, pp. 529-543, 2022. [26] P. Gou, Z. Yu, X. Hu, and K. Miao, "[Retracted] Three‐Dimensional DV‐Hop Localization Algorithm Based on Hop Size Correction and Improved Sparrow Search," Wireless Communications and Mobile Computing, vol. 2022, no. 1, p. 1540110, 2022. [27] Q. Liang, S.-C. Chu, Q. Yang, A. Liang, and J.-S. Pan, "Multi-group gorilla troops optimizer with multi-strategies for 3D node localization of wireless sensor networks," Sensors, vol. 22, no. 11, p. 4275, 2022. [28] A. Corbacho Salas, "Indoor positioning system based on bluetooth low energy," Universitat Politècnica de Catalunya, 2014. [29] C. p. Liu, B. Xia, and L. Zhang, "Firefly Optimization‐Based Cooperative Localization Algorithm for Intelligent IoT," Discrete Dynamics in Nature and Society, vol. 2022, no. 1, p. 3398071, 2022. [30] S. J. Bhat and S. KV, "A localization and deployment model for wireless sensor networks using arithmetic optimization algorithm," Peer-to-Peer Networking and Applications, vol. 15, no. 3, pp. 1473-1485, 2022. [31] Y. H. Robinson, S. Vimal, E. G. Julie, K. Lakshmi Narayanan, and S. Rho, "3-dimensional manifold and machine learning based localization algorithm for wireless sensor networks," Wireless Personal Communications, pp. 1-19, 2022. [32] H. Sun et al., "An improved DV-Hop algorithm based on PSO and Modified DE algorithm," vol. 82, pp. 403-418, 2023. [33] M. Cheng, T. Qin, and J. Yang, "Node localization algorithm based on modified Archimedes optimization algorithm in wireless sensor networks," Journal of Sensors, vol. 2022, no. 1, p. 7026728, 2022. [34] D. Han et al., "Enhancing the sensor node localization algorithm based on improved DV-hop and DE algorithms in wireless sensor networks," vol. 20, p. 343, 2020. [35] W. Zhang and X. Yang, "DV-Hop Location Algorithm Based on RSSI Correction," Electronics, vol. 12, no. 5, p. 1141, 2023. [Online]. Available: https://www.mdpi.com/2079-9292/12/5/1141. [36] M. Li et al., "A chaotic strategy-based quadratic opposition-based learning adaptive variable-speed whale optimization algorithm," vol. 193, pp. 71-99, 2022. [37] T. Chen et al., "An Enhanced DV-Hop Localization Scheme Based on Weighted Iteration and Optimal Beacon Set," vol. 11, 2022, doi: 10.3390/electronics11111774. [38] Q. Shi, Q. Xu, and J. Zhang, "An improved DV-Hop scheme based on path matching and particle swarm optimization algorithm," Wireless Personal Communications, vol. 104, pp. 1301-1320, 2019. [39] G. Sharma and A. Kumar, "Improved range-free localization for three-dimensional wireless sensor networks using genetic algorithm," Computers & Electrical Engineering, vol. 72, pp. 808-827, 2018. [40] V. Kanwar and A. Kumar, "Range free localization for three dimensional wireless sensor networks using multi objective particle swarm optimization," Wireless Personal Communications, vol. 117, no. 2, pp. 901-921, 2021. [41] N. Rana, M. S. A. Latiff, S. i. M. Abdulhamid, and H. Chiroma, "Whale optimization algorithm: a systematic review of contemporary applications, modifications and developments," Neural Computing and Applications, vol. 32, pp. 16245-16277, 2020. [42] I. O. H. Ahmed S. Menesy , Hamdy M. Sultan, "Comparison of Particle Swarm and Whale Optimization Algorithms for Optimal Power Flow Solution," International Journal of Engineering Research & Technology (IJERT), vol. 11, no. 12, 2022. [43] A. S. Ahmed, M. A. Attia, N. M. Hamed, and A. Y. Abdelaziz, "Comparison between genetic algorithm and whale optimization algorithm in fault location estimation in power systems," in 2017 Nineteenth International Middle East Power Systems Conference (MEPCON), 2017: IEEE, pp. 631-637. | ||
آمار تعداد مشاهده مقاله: 102 تعداد دریافت فایل اصل مقاله: 24 |