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Abstract
This paper introduces a monotonic weighted compact finite difference scheme (WC-FDM) designed to solve the
non-linear one-dimensional steady advection-diffusion equation (ADE). The WC-FDM scheme is validated against

the analytical solution and is adaptable to accommodate both uniform and non-uniform grid spacing. Criteria for

selecting weights have been developed to ensure scheme monotonicity. Computational performance is benchmarked
against other numerical schemes. Numerical analyses reveal that the WC-FDM accurately solves the non-linear

steady ADE for both uniform and non-uniform grid spacing scenarios without introducing spurious oscillations.

The proposed weight criteria maintain the monotonicity of the WC-FDM scheme resulting in the computational
stability regardless of the advection-dominance level and grid spacing uniformity.
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1. Introduction

The robust solution of an advection-diffusion equation (ADE) presents a significant challenge in the field of com-
putational fluid dynamics. Particularly, in scenarios where the ADE exhibits high advection dominance, conventional
numerical solutions often yield spurious oscillations. To overcome this issue, a commonly employed approach is the
use of consistently monotonic solutions such as the first-order upwind scheme. While the accuracy of the first-order
upwind scheme is generally acceptable for advection-dominant instances of the ADE, its computational accuracy is
significantly inferior to other non-monotonic numerical schemes when the equation leans towards diffusion dominance.
Over the past decade, numerous numerical solutions capable of addressing both advection and diffusion dominance
have been explored. Among the enduring solutions to suppress unwanted oscillations is the introduction of artificial
viscosity [2, 19]. However, the artificial viscosity leads to the excessive dissipation of real physics resulting in the
overly damped results [26]. Another classical method is the upwind scheme, often utilized with flux splitting ap-
proaches [2, 18]. However, while the first-order upwind scheme effectively preserves numerical stability in hyperbolic
equations, it inherits accuracy limitations due to its low-order nature [18].

The accuracy of upwind schemes has been studied in several works. The computational performance of the upwind
solution for wave equations in the second-order form was investigated in [4]. [3] shows that the central-upwind difference
with predictor-corrector schemes outperform the traditional upwind backward scheme and achieve the same accuracy
as the traditional artificial viscosity scheme when solving linear and non-linear dispersive Maxwells equations. [24]
incorporated a nodal Peclet number-based adaptive stencil approach to improve the accuracy of the upwind-radial basis
function schemes. The computational accuracy of Godunov-based upwind schemes for low Mach numbers condition was
investigated in [28]. According to Godunovs theorem, while higher-order schemes improve accuracy, upwind schemes
beyond first-order accuracy become non-monotonic, potentially leading to spurious oscillations in advection-dominated
flows [5]. A study investigating the monotonic preservation of the Petrov-Galerkin upwind scheme was undertaken
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by [5]. [13] investigated the stability limitations of second-order and third-order upwind schemes in semi-compressible
gas flow. In the work of [34], total variation diminishing (TVD) schemes were employed to enforce monotonicity
in numerical solutions by modifying solutions coefficients to adapt upwind schemes to meet TVD conditions. The
polynomial upwind schemes with parameters controlling TVD have also been explored in [8].

All the numerical solutions as mentioned above are based on Taylors series or polynomial equations. Apart from
these approaches, alternative methods such as B-spline basis functions and exponential functions have been investigated
as numerical solutions for advection-diffusion problems. For instance, [10] introduced an exponential function-based
upwind scheme. This approach has been used to solve both unsteady advection equations and Burgers equations in
the space-time domain [10, 21]. Alternatively, [14] employed a quadratic B-spline shape function-based Finite Element
Method (FEM) to solve the one-dimensional Burgers equation in the spatial domain. The cubic B-spline collocation
method, combined with the Crank-Nicolson scheme, for solving the Burgers equation is discussed in [1]. In [20], a
modified cubic B-spline basis functions was introduced, resulting in a numerically stable and diagonally dominant
system. Furthermore, [27] proposed a combination of cubic B-spline and Runge-Kutta methods to address the two-
dimensional Burgers equation. Extensions of B-spline collocation methods to quartic and septic degrees are detailed in
[22, 23]. Despite the viability of B-spline basis functions as an alternative solution for the Burgers equation, ensuring
accuracy in complex geometries remains challenging due to the strong dependence of basis function accuracy on the
correlation of knots and interpolation points [35].

Several studies have shifted focus towards modifying Taylors series-based finite difference methods to accommodate
both advection and diffusion-dominated problems. One practical solution is the weighted finite difference method
(WFDM). This method utilizes weights to alternate between or combine the first-order upwind scheme and the second-
order central scheme based on the dominance of advection or diffusion. WFDM offers the advantage of producing
monotonic and highly accurate results even with coarse grid points, across various levels of advection and diffusion
when the appropriate value of weight is employed. For instance, [11] controlled scheme stability by using the weighted
mean value of neighbouring points when encountering highly advective problems. Additionally, [9] approximated the
advective term by combining weighted first-order upwind and central difference schemes. The study of [12] have
demonstrated that WFDM with forward in time cantered space (FTCS) outperforms the upwind-FTCS scheme. The
concept of weighted schemes extends beyond switching between upwind and central schemes for spatial domain to
encompass switching between explicit and implicit time schemes. In [29], the time derivative is approximated using a
combination of weighted explicit and implicit schemes. This numerical scheme can adapt to classical explicit, classical
implicit, and Crank-Nicolson schemes depending on the weight [29]. Further development of weighted schemes in
the generalized finite difference method for two-dimensional advection-diffusion equations is discussed in [15]. While
WFDM can provide unconditionally stable solutions for advection-dominated equations with few points, determining
an appropriate weight for optimal results remains a significant challenge. Nonetheless, even without weights, the finite
difference method can offer unconditionally stable solutions for advection-diffusion equations in several scenarios,
particularly when formulated as compact finite difference schemes. Various studies have explored the application of
compact finite difference schemes to non-linear ADEs. For example, [16, 17] developed a fourth-order compact finite
difference solution using the Hopf-Cole transformation, while [25] extended the compact finite difference to sixth-
order accuracy using the Runge-Kutta scheme in the time domain. Stability and convergence analyses of fourth-order
compact finite difference solutions for one-dimensional Burgers equations can be found in [30]. Additionally, [36]
introduced a MacCormack-based compact finite difference scheme, achieving fourth-order accuracy for both first-order
and second-order derivatives. Finally, [32, 33] presented fourth-order compact finite difference schemes for transient
three-dimensional Burgers equations.

This paper introduces a weighted compact finite difference method (WC-FDM) which is a consistently monotonic
scheme. The aim is to develop a novel numerical solution for a non-linear advection-diffusion equation (ADE) that
improves computational performance. The presented ADE equation describes the transport phenomena of uniaxial
fluid flow within an axial geometry. The novelty of the proposed scheme lies in the combination of the first-order
upwind scheme with the fourth-order compact finite difference method, alongside a weight selection algorithm that
ensures monotonicity under varying levels of advection dominance. This method can accommodate both uniform and
non-uniform grid spacing. The computational accuracy of the proposed numerical scheme is validated against the
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analytical solution presented by [31], the upwind-central difference scheme, full central difference scheme, and full
fourth-order compact difference scheme.

2. Mathematical model

The non-linear one-dimensional steady ADE is defined as follows.

u∂xu− ν∂2
xu = 0, x ∈ R[−1,1], (2.1)

where u is a fluid velocity, ν is a diffusivity. The boundary conditions for Eq. (2.1).

u (−1) = 1.01, (2.2)

u (1) = −1. (2.3)

The analytical solution for Eq. (2.1) based on [31] is shown as follows.

u (x) = −C1tanh

[
C1

2ν
(x− C2)

]
, (2.4)

C1 (2 + δ) =
(
C2

1 + δ + 1
)

tanh

(
C1

ν

)
, (2.5)

C2 = 1− 2ν

C1
tanh−1

(
1

C1

)
. (2.6)

The velocity profile from Eq. (2.4) can be calculated using the constants defined in Eqs. (2.5) and (2.6). Since Eq.
(2.5) is the non-linear equation, the constant C1 can be determined through the iterative method. Subsequently, the
constant C2 is solved from Eq. (2.6).

3. Weighted Compact Finite Difference

The governing Equation (2.1) can be solved by approximating the first and second derivatives using a weighted
compact finite difference. The proposed method combines the first-order upwind scheme with the fourth-order compact
scheme. The first derivative, ∂xu, is evaluated using a weighted combination of the first-order upwind scheme and the
fourth-order compact scheme centred on the stencil’s central point. While, the second derivative, ∂2

xu, is evaluated
separately using the fourth-order compact scheme centred on the stencil’s central point. The approximation solution
of Eq. (2.1) can be formulated as follows.

u
[
(1− ω)

(
a+∂xu

− + a−∂xu
+
)

+ ω∂xu
0
]
− ν∂2

xu = 0, (3.1)

a+ =
max (0, u)

u
, a− =

min (0, u)

u
. (3.2)

It is well known that the first-order upwind exhibits a superior numerical stability, but lacks high-order accuracy. On
the other hands, the compact scheme offers great approximation accuracy but can produce oscillatory results at a high
degree of advection. The proposed scheme uses the weight ω ∈ R[0,1] to control the scheme’s stability and accuracy
by switching between or combine the first-order upwind scheme and the fourth-order compact scheme according to
the level of advection. The selection of the weight, ω, is discussed later in section 4. The parameters, a+ ∈ {0, 1}
and a− ∈ {0, 1}, represent the functions switching between first order backward or forward differences based on the
direction of the velocity u. Specially, when u > 0 and a+ = 1, ∂xu is approximated by the first-order backward
difference or vice versa. When u = 0, the governing Equation (2.1) transforms into a pure diffusion problem, where
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switching function (3.2) eliminates all upwind schemes, leaving only the central difference to be solved. The first
derivatives ∂xu

− and ∂xu
+ correspond to the first order backward difference and forward difference, respectively.

∂xu
− =

ui − ui−1

hi−1
, (3.3)

∂xu
+ =

ui+1 − ui
hi+1

, (3.4)

hi−1 = xi − xi−1 , hi+1 = xi+1 − xi. (3.5)

The first derivative ∂xu
0 and the second derivative ∂2

xu based on central-point approach are approximated by the
compact finite difference. Differentiating Eq. (2.1) up to the third and fourth orders and assuming velocity u multiplied
by the first-derivative term as a constant yields:

u∂2
xu− ν∂3

xu = 0, (3.6)

u∂3
xu− ν∂4

xu = 0. (3.7)

Expanding the Taylor’s series expansion up to the fourth-order term based on points ui−1 and ui+1 results in:

ui+1 = ui + hi+1∂xu+
h2
i+1

2
∂2
xu+

h3
i+1

6
∂3
xu+

h4
i+1

24
∂4
xu, (3.8)

ui−1 = ui − hi−1∂xu+
h2
i−1

2
∂2
xu−

h3
i−1

6
∂3
xu+

h4
i−1

24
∂4
xu. (3.9)

Substituting Eqs. (3.6)–(3.7) into Eqs. (3.8)–(3.9) and solving for ∂xu
0 and ∂2

xu results in the compact central scheme,
as follows.

∂xu
0 =

ui+1Gi−1 − ui (Gi−1 −Gi+1)− ui−1Gi+1

D
, (3.10)

∂2
xu =

ui+1hi−1 − ui (hi−1 + hi+1) + ui−1hi+1

D
, (3.11)

Gi−1 =
h2
i−1

2
−
uih

3
i−1

6ν
+
u2
ih

4
i−1

24ν2
, (3.12)

Gi+1 =
h2
i+1

2
+
uih

3
i+1

6ν
+
u2
ih

4
i+1

24ν2
, (3.13)

D = hi+1Gi−1 + hi−1Gi+1. (3.14)

Substituting Eqs. (3.3), (3.4), (3.10), and (3.11) into the governing Equation (2.1) results in the approximation solution
based on the 3-point stencil as follows.

ci−1ui−1 + ciui + ci+1ui+1 = 0, (3.15)

ci−1 = −a+ui (1− ω)

hi−1
− ωuiGi+1 + νhi+1

D
, (3.16)
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ci = ui (1− ω)

(
a+

hi−1
− a−

hi+1

)
+
ωui (Gi+1 −Gi−1) + νhi+1 + νhi−1

D
, (3.17)

ci+1 = a−
ui (1− ω)

hi+1
+
ωuiGi−1 − νhi−1

D
. (3.18)

4. Monotonicity criteria for weighted compact finite difference

The proposed method yields stable or non-oscillatory results when Eq. (3.15) becomes a monotonic function. To
obtain a consistent monotonic solution at any level of advection, both coefficients ci−1 and ci+1 of Eq. (3.15) must
have the same sign [6]. The weight, ω, is a key parameter for controlling the sign of both coefficients ci−1 and ci+1.
The sign analysis begins with evaluating the signs of the numerators and the denominators in Eqs. (3.16) and (3.18).
Initially, Eqs. (3.12) and (3.13) are re-arranged to express them as the function of ui, as follows.

Gi−1 = fi−1 (ui) = di−1 + bi−1ui + ai−1u
2
i , (4.1)

Gi+1 = fi+1 (ui) = di+1 + bi+1ui + ai+1u
2
i , (4.2)

ai−1 =
h4
i−1

24ν2
, ai+1=

h4
i+1

24ν2
, bi−1 = −

h3
i−1

6ν
, bi+1 =

h3
i+1

6ν
, di−1 =

h2
i−1

2
, di+1 =

h2
i+1

2
. (4.3)

From Eqs. (4.1) and (4.2), we observe that fi+1 (ui) and fi−1 (ui) represent the quadratic equations with ui as variable.
Calculating the discriminants of functions (4.1) and (4.2) reveals that:

−
h6
i−1

18ν2
< 0, (4.4)

−
h6
i+1

18ν2
< 0. (4.5)

Eqs. (4.4) and (4.5) indicate that Gi−1 and Gi+1 have only one sign, either positive or negative, across the change of
velocity ui. To calculate the exact sign of Gi−1 and Gi+1, the functions (4.1) and (4.2) are differentiated with respect
to ui to obtain the location of the deflection point.

∂uifi−1 = −
h3
i−1

6ν
+
uih

4
i−1

12ν2
= 0, (4.6)

∂ui
fi+1 =

h3
i+1

6ν
+
uih

4
i+1

12ν2
= 0. (4.7)

From the above two expressions, we can find the velocity ui at the deflection point of Eqs. (4.1) and (4.2) as follows.

ui =

{
2ν
hi−1

, for fi−1 (ui) ,

− 2ν
hi+1

, for fi+1 (ui) .
(4.8)

Eq. (4.8) is substituted into (4.1) and (4.2) to estimate the signs of fi−1 and fi+1 at the deflection point, resulting in:

fi−1

(
2ν

hi−1

)
=
h2
i−1

3
> 0, (4.9)
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fi+1

(
− 2ν

hi+1

)
=
h2
i+1

3
> 0. (4.10)

Eqs. (4.9) and (4.10) show that the functions fi−1 and fi+1 are positive at the deflection point and therefore (Figure
1), {

Gi−1 > 0, ∀ ui ∈ R,
Gi+1 > 0, ∀ ui ∈ R.

(4.11)

According to Eq. (4.11), hi−1 > 0, and hi+1 > 0, therefore, the denominator:

D > 0, ∀ ui ∈ R. (4.12)

However, the numerators of coefficients ci−1 and ci+1 in Eqs. (3.16) and (3.18) respectively may have uncertain signs
depending on the direction of ui. For ω ∈ [0, 1] and ui > 0, the coefficient ci−1 < 0, while the sign of coefficient ci+1

can fluctuate depending on the right-hand side terms of Eq. (3.18). To maintain the monotonicity of the scheme or
to ensure that the sign of coefficient ci+1 is also negative, the weight ω is utilized to force the coefficient ci+1 to be
negative according to the following condition.

ω ≤ νhi−1

|ui|Gi−1
. (4.13)

Figure 1. Example profiles of Gi−1 and Gi+1 along the velocity ui with hi−1 = hi+1 = 0.26 and
ν = 0.01 a) indicates the deflection point of Gi−1 at ui = 2ν/hi−1 and b) indicates the deflection
point of Gi+1 at ui = −2ν/hi+1.

In similar fashion, for ω ∈ [0, 1] and ui < 0, the coefficient ci+1 < 0, while the sign of coefficient ci−1 can fluctuate.
The weight ω that maintains the monotonic scheme must ensure that ci−1 < 0. This weight ω is:

ω ≤ νhi+1

|ui|Gi+1
. (4.14)

The weight criteria (4.13) and (4.14) demonstrate that the weight ω is always positive since ν > 0, hi−1 > 0, hi+1 > 0,
Gi−1 > 0, and Gi+1 > 0. However, selecting the weight ω based on Eqs. (4.13) and (4.14) is still ambiguous task
since it can be any arbitrary value that satisfies Eqs. (4.13) and (4.14) and falls within the range between zero to one.
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Therefore, it is more convenient to select a specific value of the weight ω that at least initiates a monotonic scheme.
In such case, the weight ω is set to its maximum value of Eqs. (4.13) and (4.14).

ω =

{
νhi−1

|ui|Gi−1
, ∀ ui > 0,

νhi+1

|ui|Gi+1
, ∀ ui < 0.

(4.15)

5. Computational Processes

In this work, the Newton-Raphson iterative method is employed to solve Eq. (3.15), a non-linear equation with
multiple variables ui−1, ui, and ui+1. The iterative solution begins by formulating the weighted compact finite

difference as a vector-valued function f of the initialized velocities vector u(k) = (u1, u2, u3, . . . , un)
(k)

in the matrix
form, as follows.

f
(
u(k)

)
=



0
c1u1 + c2u2 + c3u3

c2u2 + c3u3 + c4u4

...
cn−2un−2 + cn−1un−1 + cnun

0


=



0
0
0
...
0
0


, (5.1)

where the superscript k denotes the iteration number. The first and the last rows of Eq. (5.1) are replaced by zero,
enabling Eq. (5.1) to meet the boundary conditions (2.2) and (2.3). The predicted velocities ui at the next iteration
number, k + 1, can be calculated according to the following expression.

u(k+1) = u(k) −
(

df
(
u(k)

))−1

f
(
u(k)

)
, (5.2)

where the Jacobian matrix df
(
u(k)

)
is

df
(
u(k)

)
=



1 0 0 . . . 0
c1 ∂u2 (c2u2) c3 . . . 0
0 c2 ∂u2

(c3u3) c4 0
...

...
...

. . .
...

cn−2 ∂un−1
(cn−1un−1) cn

0 . . . 0 0 1


n×n

, (5.3)

∂ui (ciui) = ci + ui (1− ω)

(
a+

hi−1
− a−

hi+1

)
− ωu2

i

(
(∂xGi−1 − ∂xGi+1)

D
+ (Gi−1 −Gi+1) ∂x

(
1

D

))
− ωui (Gi−1 −Gi+1)

D
+ νui (hi−1 + hi+1) ∂x

(
1

D

)
,

∂ui
Gi−1 =

uih
4
i−1

12ν2
−
h3
i−1

6ν
, (5.4)
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∂uiGi+1 =
uih

4
i+1

12ν2
+
h3
i+1

6ν
,

∂x

(
1

D

)
= −hi+1∂ui

Gi−1 + hi−1∂ui
Gi+1

D2
.

The diagonal components of the first and the last rows of Eq. (5.3) are set to one, enabling Eq. (5.3) to meet the
boundary conditions (2.2) and (2.3). The weight criteria from Eqs. (4.13) and (4.14) is still valid to control the
monotonicity of Eq. (5.3) since coefficients ci−1 and ci+1 remain unchanged. The iterative solution in Eq. (5.2)
continues until the difference between the velocities vector u(k+1) and u(k) reaches the specified tolerance.

6. Convergence Analysis

The convergence of the proposed numerical method is evaluated in term of the order of convergence which can be
calculated as follows [7].

‖u− uA‖2
‖uA‖2

= Cn−p. (6.1)

where u is the velocity vector calculated by the proposed numerical method, uA is the velocity vector calculated by
the analytical solution (2.4)–(2.6), C is the constant and p is the order of convergence. Eq. (6.1) is linearised by taking
natural logarithm on both sides.

lnC − plnn = ln

(
‖u−uA‖2
‖uA‖2

)
. (6.2)

The order of convergence, p, can be solved from Eq. (6.2) using the least square method.

7. Results and discussion

Numerical analysis is conducted under two simulation scenarios, the uniform grid spacing and the non-uniform
grid spacing. Both scenarios simulate the non-linear ADEs with respect to the boundary conditions (2.2) and (2.3),
the iteration termination tolerance based on the relative root mean square error (RRMSE), and five diffusivities ν as
presented in Table 1. The computational performance of the proposed weighted-compact finite difference (WC-FDM)
is benchmarked against the upwind scheme (Upwind), where the first-order term is approximated by the first-order
backward difference and the second-order term by the central difference. Additionally, the comparisons are made with
the conventional second-order central scheme (Central), where both first and second-order terms are approximated
by the second-order central difference, and the fourth-order compact finite difference (Compact), considering varying
number of points n. The uniform and non-uniform grid spacing scenarios are formulated as follows.

For uniform grid spacing:

x =
2 (i− 1)

n− 1
− 1, (7.1)

For non-uniform grid spacing:

x =

{
1.3(i−1)
0.3n−1 − 1, ∀ i ∈ N[1,0.3n],
0.7(i−0.3n)

0.7n + 0.3, ∀ i ∈ N[0.3n,n].
(7.2)

Numerical simulation results of the uniform grid spacing are presented in Figures 2–5, while those for the non-uniform
grid spacing are presented in Figures 6–9. In the non-uniform grid spacing scenario, the point density within the range
i ∈ N[1,0.3n] is smaller than the point density in the range i ∈ N[0.3n,n].

Figures 2–5 compare the proposed numerical scheme (WC-FDM) with other numerical schemes in a uniform grid
spacing scenario. Figure 2 demonstrates that all schemes provide stable solutions at high diffusion levels (ν = 0.1 and
0.05). However, the upwind scheme (Upwind) shows the lowest computational accuracy at these diffusivities (Figures
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Table 1. Simulation parameters.

Parameters Value
Iteration termination tolerance (RRMSE) 10−9

Diffusivities ν 0.1, 0.05, 0.025, 0.01
Number of points n 20, 40, 80, 160, 320, 640

2 (a) and (b)), due to its first-order accuracy in approximating the advection term. In contrast, other schemes use
higher-order approximations for the advection term.

At lower diffusion levels (ν = 0.025 and 0.01), the central scheme (Central) exhibits spurious oscillations. These
oscillations arise because the central scheme’s approximation of the advection and diffusion terms results in non-
monotonic solutions. Similarly, the compact scheme (Compact) also shows small oscillations at ν = 0.01, leading
to lower accuracy compared to both the WC-FDM and upwind schemes. This indicates that the compact scheme
becomes non-monotonic with a smaller stencil size in advection-dominant problems. However, when the stencil size
is increased, the spurious oscillations of both the compact and central schemes vanish, and the solutions become
monotonic (Figures 3 (a)–(d)).

The WC-FDM and upwind schemes maintain numerical stability across all diffusion levels (Figures 2 (a)–(d) and
Figures 3 (a)–(d)) because both are consistently monotonic. The WC-FDM scheme demonstrates a notable advantage
over the upwind scheme, achieving superior computational accuracy at high diffusion levels (ν = 0.1 and 0.05) and
matching the upwind scheme’s accuracy at low diffusion levels (ν = 0.025 and 0.01) or when the problem becomes highly
advection-dominant. This advantage is due to the weight criteria incorporated in the WC-FDM, which effectively
eliminates numerical oscillations in highly advection-dominated scenarios while preserving high accuracy in more
diffusive contexts.

Figure 4 illustrates the convergence of all numerical schemes based on the relative root mean square error (RRMSE)
as a function of stencil size. The RRMSE of all schemes converges to an asymptote, except for the upwind scheme,
which shows slight divergence at very fine stencils (n = 640) (Figure 4 (d)). This divergence may be related to the
non-linearity of the governing equations, where computational accuracy is sensitive to changes in discretization. This
sensitivity is evident in Figure 4 (c), where the compact scheme shows a slight overshoot at n = 40. In contrast, the
WC-FDM scheme handles this discretization error sensitivity effectively, with the RRMSE decreasing rapidly across
all stencil sizes and diffusion levels (Figures 4 (a)–(d)). The weight criteria in Eq. (4.15) allow the WC-FDM scheme
to behave like a full compact scheme at high diffusion levels (ν = 0.1 and 0.05) and like a full upwind scheme in more
highly advection-dominated scenarios, ensuring accurate and stable solutions.

Figure 5 compares the computational speed of all schemes by the number of iterations required to achieve a steady-
state solution at an error tolerance of 10−9 RRMSE. The upwind scheme requires more iterations as the stencil
size increases, while other higher-order schemes eventually reach a steady-state when the discretized domain exceeds
160 points. Overall, the WC-FDM scheme has a computational speed comparable to the compact scheme across all
diffusion levels and outperforms the compact scheme at ν = 0.025 and 0.01 with smaller stencil sizes (Figures 5 (c)
and (d)).

Tables 2–4 summarize the overall computational performance of the WC-FDM scheme. Both the WC-FDM and
compact schemes show minimal errors at ν = 0.1 across varying numbers of points (Table 2), with nearly identical
convergence rates, the highest among the compared schemes (Table 4). Conversely, the upwind scheme shows the
largest error due to its first-order accuracy, which is insufficient for precisely approximating the given non-linear
advection-diffusion equation. In highly advection-dominant cases (ν = 0.01), both the WC-FDM and upwind schemes
demonstrate the best accuracy within the 20–40 point range (Table 3). Beyond this range, other schemes outperform
the upwind scheme. The WC-FDM, with its proposed weight criteria, consistently exhibits minimal errors across both
diffusion levels and stencil sizes, combining the advantages of both upwind and compact schemes.

The computational accuracy of all schemes significantly decreases in the non-uniform grid spacing scenario (Figures
6–8 and Tables 5–6). Notably, the variation in grid spacing across the spatial domain affects the computational accuracy
of all schemes. Particularly, oscillations are evident in the compact scheme (Compact) (Figures 6 (c) and (d)), revealing
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Figure 2. Numerical simulation results of the non-linear steady ADE with 40 uniformly spaced grid
points at different diffusivities a) ν = 0.1, b) ν = 0.05, c) ν = 0.025, and d) ν = 0.01.

that the compact scheme cannot maintain the monotonic property even in highly advection-dominant problems.
Meanwhile, the WC-FDM and upwind schemes (Upwind) maintain their stability. The first-order approximation of
the upwind scheme always gives a monotonic solution, which is independent on the stencil size, grid spacing, and
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diffusion level. In contrast, the monotonicity of the WC-FDM is maintained by the proposed weight criteria. Figures
6 and 7 demonstrate that the proposed weight criteria can effectively stabilize the solution even with the non-unform
grid spacing scenario.

Figure 3. Numerical simulation results of the non-linear steady ADE with 160 uniformly spaced
grid points at different diffusivities a) ν = 0.1, b) ν = 0.05, c) ν = 0.025, and d) ν = 0.01.
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In addition, the non-uniform grid spacing affects the order of convergence, and the number of iterations required
to reach a steady state result. This spacing results in the lower computational accuracy for all schemes, which in
turn decreases the order of convergence and increases the number of iterations (Table 7, and Figures 8–9). Unlike
uniform grid spacing scenario, it is difficult to predict the order of convergence in the non-uniform scenario, as solution
accuracy depends on the uniformity of grid spacing and the non-linearity. However, the WC-FDM scheme can still
maintain the order of convergence above two in such scenarios, even though the scheme is partially based on the central
point approximation. This contrasts with the full central scheme, which exhibits the diverging order of convergence
(Table 7) when the variation of grid spacing is significant, especially in highly diffusion-dominant scenario (ν = 0.1
and ν = 0.05).

Table 2. The computational performance of the numerical schemes with diffusivity ν = 0.1 and
uniform grid spacing.

Number of points
Error Schemes 20 40 80 160 320 640
L∞ norm error WC-FDM 0.066913 0.013886 0.003273 0.000799 0.000195 0.000044

Upwind 0.977572 0.524857 0.283027 0.147321 0.075197 0.043590
Central 0.297163 0.063575 0.015189 0.003725 0.000922 0.000226
Compact 0.066913 0.013886 0.003273 0.000799 0.000195 0.000044

MAPE (%) WC-FDM 53.5732 0.9287 0.2512 0.0705 0.0195 0.0049
Upwind 605.0191 38.0521 24.4506 14.9364 8.7468 5.7681
Central 240.5525 4.8151 1.3262 0.3775 0.1065 0.0295
Compact 53.5732 0.9287 0.2512 0.0705 0.0195 0.0049

RRMSE WC-FDM 5.88E-03 8.18E-04 1.35E-04 2.33E-05 4.03E-06 6.43E-07
Upwind 9.63E-02 3.43E-02 1.28E-02 4.69E-03 1.69E-03 6.91E-04
Central 2.50E-02 3.92E-03 6.68E-04 1.17E-04 2.04E-05 3.55E-06
Compact 5.88E-03 8.18E-04 1.35E-04 2.33E-05 4.03E-06 6.43E-07

Table 3. The computational performance of the numerical schemes with diffusivity ν = 0.01 and
uniform grid spacing.

Number of points
Error Schemes 20 40 80 160 320 640
L∞ norm error WC-FDM 2.010000 2.010000 2.010000 0.101022 0.021372 0.005051

Upwind 2.010000 2.010000 2.010000 1.070471 0.614883 2.009669
Central 4.879184 5.588293 1.876112 0.450103 0.096249 0.023282
Compact 3.420107 2.311134 2.010000 0.101022 0.021372 0.005051

MAPE (%) WC-FDM 89.6027 127.1196 104.3011 0.7273 0.1172 0.0398
Upwind 89.5867 127.0910 104.2451 7.2446 3.6787 27.7631
Central 189.9909 156.1783 16.4079 3.3774 0.5936 0.2093
Compact 126.3026 184.6779 104.3011 0.7273 0.1172 0.0398

RRMSE WC-FDM 0.298645 0.215097 0.152570 0.000927 0.000129 0.000021
Upwind 0.295511 0.212893 0.151451 0.011514 0.004172 0.023713
Central 0.481839 0.308611 0.026952 0.003926 0.000608 0.000104
Compact 0.365897 0.274415 0.152570 0.000927 0.000129 0.000021
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Figure 4. Error convergence of the numerical schemes with uniform grid point spacing at different
diffusivities a) ν = 0.1, b) ν = 0.05, c) ν = 0.025, and d) ν = 0.01.

8. Conclusion

In this paper, a monotonic weighted finite difference scheme (WC-FDM) is introduced. The proposed WC-FDM
scheme is validated against the analytical solution of the non-linear one-dimensional steady advection-diffusion equation



14 P. CHIVAPORNTHIP

Figure 5. Number of iterations of the numerical schemes required to obtain the steady velocity with
uniform grid point spacing at different diffusivities a) ν = 0.1, b) ν = 0.05, c) ν = 0.025, and d)
ν = 0.01.

(ADE). It is developed to handle both uniform and non-uniform grid spacing. The criteria for selecting weights are
demonstrated to ensure the monotonicity of the developed numerical scheme. The computational performance of the
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Table 4. The order of convergence p for the numerical schemes with uniform grid spacing.

Order of convergence p
Schemes ν = 0.1 ν = 0.05 ν = 0.025 ν = 0.01
WC-FDM 2.6093 3.1940 3.4165 3.0967
Upwind 1.4313 1.5409 1.3912 1.1126
Central 2.5483 2.5615 2.7663 2.5894
Compact 2.6093 3.1940 3.2996 3.1686

Table 5. The computational performance of the numerical schemes with diffusivity ν = 0.1 and
non-uniform grid spacing.

Number of points
Error Schemes 20 40 80 160 320 640
L∞ norm error WC-FDM 1.46E+00 1.31E+00 1.25E-01 2.16E-02 5.04E-03 1.24E-03

Upwind 1.62E+00 1.81E+00 1.75E+00 1.65E+00 1.47E+00 9.77E-01
Central 1.10E+00 9.16E-01 1.66E+01 5.04E-01 7.27E+04 2.01E+00
Compact 1.46E+00 1.31E+00 1.25E-01 2.16E-02 5.04E-03 1.24E-03

MAPE (%) WC-FDM 1.31E+02 6.28E+03 4.36E+02 3.96E+01 5.15E+00 7.76E-01
Upwind 1.48E+02 6.82E+03 3.49E+03 1.82E+03 9.92E+02 4.99E+02
Central 1.19E+02 5.18E+03 5.54E+04 8.63E+02 2.03E+07 6.91E+02
Compact 1.31E+02 6.28E+03 4.36E+02 3.96E+01 5.15E+00 7.76E-01

RRMSE WC-FDM 1.76E-01 1.17E-01 8.56E-03 1.05E-03 1.73E-04 3.00E-05
Upwind 2.13E-01 1.64E-01 1.10E-01 7.27E-02 4.63E-02 2.27E-02
Central 1.55E-01 8.51E-02 1.84E+00 2.42E-02 1.77E+03 5.74E-02
Compact 1.76E-01 1.17E-01 8.56E-03 1.05E-03 1.73E-04 3.00E-05

Table 6. The computational performance of the numerical schemes with diffusivity ν = 0.01 and
non-uniform grid spacing.

Number of points
Error Schemes 20 40 80 160 320 640
L∞ norm error WC-FDM 2.010000 2.010000 2.010000 2.010000 2.010000 0.001228

Upwind 2.009949 2.009999 1.054593 0.612213 0.342437 0.180862
Central 5.312704 3.937002 2.300301 2.855492 20.333375 2.010000
Compact 2.011044 2.010000 4.578367 2.010000 2.010000 0.001228

MAPE (%) WC-FDM 113.9829 147.4202 140.5684 138.8242 146.1408 0.0186
Upwind 113.9281 102.4596 13.4014 7.2537 6.4107 3.1637
Central 239.5639 195.8257 163.8034 169.9778 809.0884 203.1004
Compact 170.2307 168.4751 165.2753 178.9328 146.1408 0.0186

RRMSE WC-FDM 0.292123 0.258885 0.182101 0.128184 0.090465 0.000007
Upwind 0.285254 0.204972 0.023022 0.008397 0.003222 0.001187
Central 0.547422 0.313837 0.196933 0.143328 0.630505 0.077490
Compact 0.372421 0.270265 0.207369 0.147175 0.090465 0.000007

proposed WC-FDM scheme is benchmarked against the upwind-central difference scheme, the full central difference
scheme, and the fourth-order compact difference scheme.

In the uniform grid spacing scenario, the WC-FDM demonstrates notable advantages over other schemes, particu-
larly in maintaining stability and accuracy across varying diffusivities. It effectively suppresses numerical oscillations in
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Table 7. The order of convergence p for the numerical schemes with non-uniform grid spacing.

Order of convergence p
Schemes ν = 0.1 ν = 0.05 ν = 0.025 ν = 0.01
WC-FDM 2.6806 4.3631 3.7274 2.3271
Upwind 0.6351 2.0309 1.5882 1.6845
Central -0.8459 -1.2630 0.4913 0.3296
Compact 2.6806 4.4664 3.7975 2.3822

highly advection-dominated situations while preserving accuracy in diffusive contexts. The WC-FDM offers a balance
between the advantages of upwind and compact schemes. Conversely, in the non-uniform grid spacing scenario, com-
putational accuracy diminishes across all schemes due to uneven point distribution. As the number of points increases,
all schemes converge rapidly, with WC-FDM and compact schemes proving most efficient for high diffusivities, while
the upwind scheme excels at low diffusivities. Notably, WC-FDM and compact schemes emerge as the most efficient
solutions for all diffusion levels in non-uniform grid spacing scenario when a very fine stencil size is employed.
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Figure 6. Numerical simulation results of the non-linear steady ADE with 40 non-uniformly spaced
grid points at different diffusivities a) ν = 0.1, b) ν = 0.05, c) ν = 0.025, and d) ν = 0.01.
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Figure 7. Numerical simulation results of the non-linear steady ADE with 160 non-uniformly spaced
grid points at different diffusivities a) ν = 0.1, b) ν = 0.05, c) ν = 0.025, and d) ν = 0.01.
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Figure 8. Error convergence of the numerical schemes with non-uniform grid spacing at different
diffusivities a) ν = 0.1, b) ν = 0.05, c) ν = 0.025, and d) ν = 0.01.
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Figure 9. Number of iterations of the numerical schemes required to obtain the steady velocity with
non-uniform grid spacing at different diffusivities a) ν = 0.1, b) ν = 0.05, c) ν = 0.025, and d)
ν = 0.01.
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[21] T. Öziş and U. Erdoğkan, An exponentially fitted method for solving Burgers’ equation, Int. J. Numer. Methods
Eng., 79 (2009), 696–705.

[22] M. A. Ramadan, T. S. El-Danaf, and F. E. I. A. Alaal, A numerical solution of the Burgers’ equation using septic
B-splines, Chaos Solit. Fractals, 26(4) (2005), 1249–1258.
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