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Abstract
In this work, we focus on the conformable fractional integral and derivative. We approximate the one and two-

variable functions by the Bernstein basis and its dual basis with studying convergence. Then, we get the new

operational matrix for conformable fractional integral based on the Bernstein basis. To show the effectiveness
of these approximations and conformable integral operational matrix, we apply them for solving the nonlinear

system of differential equations, the optimal control problem in the conformable fractional sense and the space

conformable fractional telegraph equation.
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1. Introduction

In the late 17th century, the concept of fractional derivatives has proposed. The Riemann-Liouville, Caputo
and Grunwald-Letnikov definitions are the common definitions of fractional derivative that are defined as follows,
respectively

(1) Riemann Liouville definition:

RL
a Dα

t f(t) =
1

Γ(n− α)
(
d

dt
)n
∫ t

a

(t− x)n−α−1f(x)dx, t > a, n− 1 < α ≤ n, (n ∈ N).

(2) Caputo definition:

C
aD

α
t f(t) =

1

Γ(n− α)

∫ t

a

(t− x)n−α−1f(x)dx, t > a, n− 1 < α ≤ n, (n ∈ N).

(3) Grunwald-Letnikov definition:

GL
a Dα

t f(t) = lim
h→0

h−α

t−a
h∑
j=0

(−1)j
(
α

j

)
f(t− jh).

However, the loss of some important algebraic features of fractional order differentiation, such as the product rule
and the chain rule, is the most important weakness of the Riemann-Liouville fractional derivative and the Caputo
fractional derivative. For these important reasons, the authors in [1, 16] introduced a new fractional derivative that
so-called the conformable fractional derivative, based on the elementary definition of derivative.
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The study of conformable fractional calculus has led to interesting applications in different fields of science. For
example, in 2016, for converting fractional coupled nonlinear Schrodinger equations into the ordinary differential equa-
tions, the new conformable fractional derivative was proposed by Eslami in [12]. In 2017, for solving the conformable
time-fractional Klein-Gordon equations with quadratic and cubic nonlinearities, the modified Kudryashov method
suggested by Hosseini et al. [14]. In nonlinear differential equation, an existence of solution for a local fractional
nonlinear differential equation with initial condition was proposed by Bayour et al. [9]. Then Unal et al. [25] obtained
an operator method for local fractional linear differential equations. In nonlinear partial differential equations, Cenesiz
et al. studied new exact solutions of Burgers type equations with conformable derivative [10]. Zhao and Luo were
introduced the general conformable fractional derivative to describe the physical world [27].

In recent years, many problems have been solved by using spectral and pseudo-spectral methods. For instance, in the
year 2017, Tabrizidooz et al. applied the pseudo-spectral method for optimal control problems [23, 24]. Pourbabaee et
al. proposed a novel Legendre operational matrix for distributed order fractional differential equations [19]. Moreover,
new operational matrix of Riemann-Liouville fractional derivative of orthonormal Bernoulli polynomials has been
obtained by them for the numerical solution of some distributed-order time-fractional partial differential equations
[20]. Akbari et al. have studied on Optimal control and stability analysis of a fractional order mathematical model for
infectious disease transmission dynamics [3]. In our last researches, we proposed the new operational matrices based
on Caputo derivative, Riemann-Liouville fractional integral and product by the Bernstein basis and applied them
for solving fractional quadratic Riccati differential equations [8], multi-order fractional differential equations [21, 22],
nonlinear system of fractional differential equations [5] and multi-dimensional fractional optimal control problems with
inequality constraint [4, 7]. Now, obtaining some new results for the conformable fractional calculus by the Bernstein
operational matrices is the original aim in the present work.

The remains of this paper are structured as follows. In section 2, we propose several basic definitions and properties
of conformable fractional calculus. In section 3, we approximate the functions by Bernstein polynomials with some
theorems and corollaries. The new operational matrix for conformable fractional integral based on the Bernstein basis
is obtained in section 4. In section 5, we use the obtained outcomes in former sections for solving the nonlinear system
of differential equations, the optimal control problem in the conformable fractional sense and the space conformable
fractional telegraph equation. To illustrate the simplicity and precision of the proposed method for solving the different
kinds of problems, we do the numerical simulations by several examples. We propose the conclusion in the final section.

2. Elementary properties and definitions

Some basic definitions and properties of the conformable fractional calculus are remarked in this section. For details,
refer to [1, 16].

Definition 2.1. Suppose f : [a,+∞)→ R , then vth order of conformable fractional derivative for f is defined by

aT
v
t f(t) = lim

ε→0

f(t+ ε(t− a)1−v)− f(t)

ε
, v ∈ (0, 1] , t > a, (2.1)

and aT
v
t f(a) = limt→a+ aT

v
t f(t).

Definition 2.2. The conformable fractional integral operator of order v ∈ (n− 1, n] , n ∈ N for function f(t), is
defined as

aI
v
t f(t) =

1

(n− 1)!

∫ t

a

(t− x)n−1(x− a)v−nf(x)dx, t > a, (2.2)

aI
0
t f(t) = f(t),

and the conformable fractional derivative of is defined as

aT
v
t f(t) = (t− a)n−vf (n)(t). (2.3)
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Theorem 2.3. Let f, g are v-conformable differentiable for v ∈ (0, 1] and t > 0. Then

(1) aT
v
t (cf + dg)(t) = caT

v
t f(t) + daT

v
t g(t) for all c, d ∈ R.

(2) aT
v
t (t− a)p = p(t− a)p−v for all p ∈ R.

(3) aT
v
t (λ) = 0 for all λ ∈ R.

(4) aT
v
t (f.g)(t) = f(t)aT

v
t g(t) + g(t)aT

v
t f(t).

(5) aT
v
t ( fg )(t) =

g(t)aT
v
t f(t)−f(t)aT

v
t g(t)

g(t)2 .

(6) aT
v
t (f ◦ g)(t) =a T

v
t g(t)f

′
(g(t)).

Now, we can propose the following properties for υ ∈ (n− 1, n] , n ∈ N

(1) aI
v
t (t− a)γ = Γ(υ+γ−n+1)

Γ(υ+γ+1) (t− a)υ+γ ,

(2) (aT
v
t )(aI

v
t )f(t) = f(t),

(3) (aI
v
t )(aT

v
t )f(t) = f(t)−

∑n−1
k=0 f

(k)(a) (t−a)k

k! , t > a,

3. Bernstein basis and approximations

Definition 3.1. The mth degree of the Bernstein polynomials (BPs) on [0, 1] is defined as:

ζi,m(t) =

(
m

i

)
ti(1− t)m−i, i = 0, 1, . . . ,m. (3.1)

Corollary 3.2. Any polynomial P (t) of the most degree m can be denoted in terms of the basis
{ζ0,m(t), ζ1,m(t), . . . , ζm,m(t)} as:

P (t) =

m∑
i=0

ciζi,m(t). (3.2)

Corollary 3.3. From Eq. (3.1) we have
∑m
i=0 ζi,m(t) = 1 and ζi,m(t) =

∑m
j=1(−1)j−i

(
m
i

)(
m−i
j−i
)
tj.

Lemma 3.4. (see [17]) For any y ∈ L2 [0, 1] = {y|
∫ 1

0
y2(t)dt <∞} we have

y(t) ≈
m∑
i=0

ηiζi,m = ηTΨm(t), (3.3)

where Ψm(t) = [ζ0,m, ζ1,m, . . . , ζm,m]
T

and η = [η0, η1, . . . , ηm]
T

is the unique vector and ηTΨm(t) is the best
approximation for y out of Sm = Span{ζ0,m, ζ1,m, . . . , ζm,m} .

Noting the fact that Bernstein polynomials are not orthogonal turns out to be their disadvantage when used in the
least-squares approximation. As said in [13] one approach to direct least-squares approximation by polynomials in
Bernstein form relies on construction of the basis {d0,m(x). . . . , dm,m(x)} that is dual to the Bernstein basis of degree
m on [0, 1].
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Corollary 3.5. In Lemma 3.4, we can get ηi as follows

ηi =

∫ 1

0

y(t)di,m(t)dt, i = 0, . . . ,m, (3.4)

where {d0,m(x). . . . , dm,m(x)} has the property

∫ 1

0

ζi,mdj,m(t)dt = δij , i, j = 0, . . . ,m. (3.5)

Moreover, in [15], we can see

dj,m(t) =

m∑
j=0

µi,jζj,m(t), j = 0, . . . ,m, (3.6)

where

µi,j =
(−1)i+j(
m
i

)(
m
j

) min(i,j)∑
r=0

(2r + 1)

(
m+ r + 1

m− i

)(
m− r
m− i

)(
m+ r + 1

m− j

)(
m− r
m− j

)
, i, j = 0 . . . ,m. (3.7)

Lemma 3.6. (See [6]) Let y : [0, 1]→ R and y ∈ Cm+1 [0, 1]. If ηTΨm(t) be the best approximation y out of Sm then

∥∥y − ηTΨm

∥∥
2
≤ K̂

(m+ 1)!
√

2m+ 3
, (3.8)

where K̂ = maxx∈[0,1]

∣∣y(m+1)(x)
∣∣. It is clear that

∥∥y − ηTΨm

∥∥→ 0 as m→∞.

Corollary 3.7. Let f(t, x) ∈ L2 [0, 1]× [0, 1]. Then, the unique matrix K exists as:

K =


k00 k01 . . . k0m

k10 k11 . . . k1m

...
...

...
...

km0 km1 . . . kmm

 , (3.9)

such that

f(t, x) ≈
m∑
i=0

ξi,m(t)kijξi,m(x) = Ψm(t)TKΨm(x),

kij =

∫ 1

0

∫ 1

0

f(t, x)di,m(t)dj,m(x)dtdx, i, j = 0, . . . ,m,

and Ψm(t)TKΨm(x) is the best approximation f out of St,xm = Span{(ζi,m(t)ζj,m(x))mi,j=0}.

Lemma 3.8. Let f : [0, 1] × [0, 1] → R and f ∈ Cm+1 [0, 1] × [0, 1]. If Ψm(t)TKΨm(x) be the best approximation f
out of St,xm then

∥∥f(t, x)−Ψm(t)TKΨm(x)
∥∥

2
≤ 2m+1M̄

(m+ 1)!
, (3.10)
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where M̄ = max
{∣∣∣∂m+1f(t,x)

∂αt∂βx

∣∣∣ t, x ∈ [0, 1], α, β ∈ {0, 1, . . . ,m+ 1}, α+ β = m+ 1
}

. Also, if f ∈ C∞[0, 1] × [0, 1]

then the error bound vanishes.

Proof. From Taylor expansion of f(t, x) about (0, 0), we have

f(t, x) =

m∑
i=0

1

i!

(
t
∂

∂t
+ x

∂

∂x

)i
f(0, 0)︸ ︷︷ ︸

f̃

+Rm(t, x), (3.11)

where Rm(t, x) = 1
(m+1)!

(
t ∂∂t + x ∂

∂x

)m+1
f (εt, εx) for some (εt, εx) ∈ (0, t)× (0, x). Since Ψm(t)TKΨm(x) is the best

approximation f out of St,xm and also f̃ ∈ St,xm is as an approximation of f , so we can get

∥∥f(t, x)−Ψm(t)TKΨm(x)
∥∥

2
≤ ‖f(t, x)− f̃(t, x)‖2 =

(∫ 1

0

∫ 1

0

|f(t, x)− f̃(t, x)|2dtdx
) 1

2

(3.12)

=

∫ 1

0

∫ 1

0

∣∣∣∣∣ 1

(m+ 1)!

(
t
∂

∂t
+ x

∂

∂x

)m+1

f (εt, εx)

∣∣∣∣∣
2

dtdx

 1
2

≤ 2m+1

(m+ 1)!
M̄.

Therefore the proof is complete. �

Lemma 3.9. (See [7]) Let Â(m+1)×(m+1) is the product operational matrix with respect to a(m+1)×1 based on BPs.

Then Â can be obtained as:

aTΨm(t)Ψm(t)T ≈ Ψm(t)T Â. (3.13)

Corollary 3.10. Let f(t) ≈ fTΨm(t), g(t) ≈ gTΦm(t), then We can approximate the functions f(t)g(t) and fk(t) as
follows:

f(t)g(t) ≈ Ψm(t)T F̂ g, (3.14)

fk(t) ≈ Ψm(t)T F̂ k−1f.

These approximations in this section can be generalized for three-variable functions. Refer to the Appendix for
details.

4. Bernstein operational matrix of conformable fractional integral

The aim of this section is to obtain the operational matrix of the conformable fractional integral by BPs. By
Corollary 3.3 and Eq. (2.1) we get

0I
v
t ξi,m(t) =

m∑
j=i

(−1)j−i
(
m

i

)(
m− i
j − i

)
0I
v
t

(
tj
)

=

m∑
j=i

(−1)j−i
(
m

i

)(
m− i
j − i

)
Γ(α+ j − n+ 1)

Γ(α+ j + 1)
tj+v, i = 0, . . . ,m. (4.1)
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Now, we approximate tj+υ(j = 0, . . . ,m) by BPs as:

tj+v ≈ PTj Ψm(t), (4.2)

where Pj = [p0,j , . . . , pm,j ]
T
, (j = 0, . . . ,m) and

pl,j =

∫ 1

0

tj+vdl,m(t)dt =

m∑
k=0

µl,k

∫ 1

0

tj+vξk,m(t)dt

=

m∑
k=0

µl,k

m∑
s=k

(−1)s−k
(
m

k

)(
m− k
s− k

)∫ 1

0

tj+v+sdx (4.3)

=

m∑
k=0

µ`,k

m∑
s=k

(−1)s−k
(
m

k

)(
m− k
s− k

)
1

(j + v + s+ 1)

=

m∑
k=0

µ`,kψk,j ,

and Ψk,j =
∑m
s=k(−1)s−k

(
m
k

)(
m−k
s−k

) ∫ 1

0
tj+v+s.

By Eq. (4.1)-(4.3) we can write

0I
v
t ξi,m(t) =

m∑
j=i

m∑
l=0

(−1)j−i
(
m

i

)(
m− i
j − i

)
Γ(j + 1)

Γ(j + v + 1)
p`,jξ`,m(t),

=

m∑
`=0

 m∑
j=i

Λi,j,l

 ξ`,m(t), for i = 0, . . . ,m, (4.4)

where Λi,j,` = (−1)j−i
(
m
i

)(
m−i
j−i
) Γ(j+1)

Γ(j+v+1)

∑m
k=0 µ`,kψk,j .

Finally, from Eq(4.4), we obtain

0I
v
t Ψm(t) ≈ FνΨm(t), (4.5)

where

Fν =



∑m
j=0 Λ0,j,0

∑m
j=0 Λ0,j,1 . . .

∑m
j=0 Λ0,j,m∑m

j=1 Λ1,j,0

∑m
j=1 Λ1,j,1 . . .

∑m
j=1 Λ1,j,m

...
... . . .

...∑m
j=i Λi,j,0

∑m
j=i Λi,j,1 . . .

∑m
j=i Λi,j,m

...
... . . .

...∑m
j=m Λm,j,0

∑m
j=m Λm,j,1 . . .

∑m
j=m Λm,j,m


. (4.6)

5. Applications

Now, we use the obtained operational matrices and approximations in section 4 for solving several problems in en-
gineering with more application and importance in conformable fractional sense, e.g. system of conformable fractional
differential equations, conformable fractional optimal control problems and space conformable fractional telegraph
equation. We use the absolute error |uexact − uapproximate| to show the accuracy of the obtained approximate solu-
tions. It is notable that the used PC is Intel(R) Core(TM) i7-7700K CPU 4.20 GHz. Also we apply version 13 of the
Mathematica software for obtaining the results.
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5.1. System of conformable fractional differential equations. We consider the nonlinear system of conformable
fractional differential equations as follows:

0T
vi
t xi(t) = gi(t,X(t)), i = 1, . . . , n, 0 < t ≤ 1, 0 < vi ≤ 1. (5.1)

and

X(0) = X0, (5.2)

where X(t) = [x1(t), . . . , xn(t)]
T

and X0 = [x0,1, . . . , x0,n]
T

. Also, gi : [0, 1]×Rn → R is a polynomial. Now, from
Eq. (5.2) we define

xi(t) = x0,i + x̃i(t), i = 1, 2, . . . n. (5.3)

Substituting Eq. (5.3) in Eq. (5.1) and Eq. (5.2), the problem is reduced as:

0T
vi
t x̃i(t) = fi(t, X̃(t)), i = 1, . . . , n, 0 < t ≤ 1, 0 < vi ≤ 1, (5.4)

and

x̃i(0) = 0, i = 1, . . . , n, (5.5)

where X̃(t) = [x̃1(t), . . . , x̃n(t)]
T

and fi : [0, 1]×Rn → R a polynomial. Now, we use the approximations:

0T
vi
t x̃i(t) ≈ CTi Ψm(t), i = 1, . . . , n, (5.6)

where Ci ∈ R(m+1)×1. By Eq. (2.3), Eq. (5.6) and Eq. (4.5), we have:

ỹi(t) = 0I
vi
t 0T

vi
t x̃i(t) ≈ 0I

vi
t

(
CTi Ψm(t)

)
= CTi 0I

vi
t Ψm(t) ≈ CTi FviΨm(t). (5.7)

So, by Eq. (5.6) and Eq. (5.7), the problem Eq. (5.1) and Eq. (5.2) are simplified to:

CTi Ψm(t) = fi
(
t, CT1 Fv1Ψm(t), . . . , CTn FvnΨm(t)

)
, i = 1, . . . , n. (5.8)

Thus, Lemma 3.4 makes the approximations for all of the known functions in Eq. (5.8). Then, by this fact that fi
are polynomial with Corollary 3.10, we conclude the approximations:

fi(t, X̃(t)) ≈ F̃i (C1, . . . , Cn) Ψm(t), i = 1, . . . , n, (5.9)

where F̃i : R(m+1)×n → R1×(m+1). So, from Eq. (5.8) and Eq. (5.9) we have

(
CTi − F̃i (C1, . . . , Cn)

)
Ψm(t) = 0, i = 1, . . . , n. (5.10)

Finally, we succeed to simplify the original problem (5.1) and (5.2) to the following algebraic system:

CTi − F̃i (C1, . . . , Cn) = 0, (5.11)

By solving the system Eq. (5.11) with respect to Ci, we can get the approximate solutions of yi(t) as:

xi(t) ≈ x0,i + CTi FviΨm(t), i = 1, 2, . . . , n. (5.12)
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Figure 1. Plot of x1(t) for m = 10 and different orders v1 = v2 = α in Example 5.1.

Table 1. The absolute error bound and absolute error in norm 2 for m=5, 10 in Example 5.1.

xi Absolute error bound m=5 Absolute error m=5 Absolute error bound m=10 Absolute error m=10

x1 4.77931× 10−3 4.78245× 10−6 1.67159× 10−7 1.50704× 10−13

x2 7.04887× 10−3 2.74753× 10−6 6.27858× 10−7 5.32105× 10−13

Example 5.1. Consider system of conformable fractional differential equations (for vi = 1 [11], [28])

0T
v1
t x1(t) = x1(t) + x2(t),

0T
v2
t x2(t) = −x1(t) + x2(t), 0 < v1, v2 ≤ 1,

and

x1(0) = 0, x2(0) = 1,

with the exact solution for v1 = v2 = 1 as follows

x1(t) = et sin(t),

x2(t) = et cos(t).

The obtained solutions for x1(t) and x2(t) by present method for m = 10 and v1 = v2 = 0.7, 0.8, 0.9, 1 are depicted
in Figures 2 and 3 respectively. In Figures 4 and 5, we display the absolute errors of results for m = 10. These figures
show that the results have high accuracy and they are good agreement with analytical solutions. As we expected, the
approximate solutions near to the exact solutions for v1 = v2 = 1 as v1, v2 approach to 1. To show the validity of the
obtained error bound, the absolute error bound and absolute error in norm 2 for m = 10 are reported in the Table 1.

Example 5.2. Consider the following system (for vi = 1 [28])

T v1t x1(t) = x1(t),

T v2t x2(t) = 2x2
1(t),

TT3
t x3(t) = 3x1(t)x2(t), 0 < v1, v2, v3 ≤ 1,
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Figure 2. Plot of x2(t) for m = 10 and different orders v1 = v2 = α in Example 5.1.
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Figure 3. Display of absolute error for x1(t), v1 = v2 = 1 and m = 10 in Example 5.1.
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Figure 4. Display of absolute error for x2(t), v1 = v2 = 1 and m = 10 in Example 5.1.
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Figure 5. Plot of x1(t) for m = 10 and different orders v1 = v2 = v3 = α in Example 5.2.

Table 2. The absolute error bound and absolute error in norm 2 for m=10 in Example 5.2.

xi Absolute error bound Absolute error

x1 1.41996× 10−8 1.22762× 10−14

x2 7.90495× 10−5 4.21361× 10−11

x3 1.85865× 10−3 6.17535× 10−9

subject to:

x1(0) = 1, x2(0) = 1, x3(0) = 0.

For v1 = v2 = v3 = 1, the exact solution is

x1(t) = et,

x2(t) = e2t,

x3(t) = e3t − 1.

Using proposed method the approximations of x1(t)x2(t) and x3(t) for m = 10 with different orders of v1, v2

and v3 are plotted in Figures 5-7, respectively. In Figures 8-10, absolute errors of approximations for m = 10 and
v1 = v2 = v3 = 1 depict the exact and the approximate solutions overlap. From these results, we find out that v1, v2

and v3 approach to 1, the approximations close to the exact solutions for v1 = v2 = v3 = 1 as expected. To show the
validity of the obtained error bound, the absolute error bound and absolute error in norm 2 for m = 10 are reported
in the Table 2.

5.2. Conformable fractional optimal control problems (CFOCP). The purpose of this section is to apply the
present scheme for solving the following fractional optimal control problem:

Min M(x(τ), u(τ)) =
1

2

∫ 1

0

(
x2(τ) + u2(τ)

)
dτ, (5.13)

subject to

0T
α
τ x(τ) = γ1(τ)x(τ) + γ2(τ)u(τ), τ, α ∈ (0, 1], (5.14)
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Figure 6. Plot of x2(t) for m = 10 and different orders v1 = v2 = v3 = α in Example 5.2.
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Figure 7. Plot of x3(t) for m = 10 and different orders v1 = v2 = v3 = α in Example 5.2.
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Figure 8. Display of absolute error for x1(t), v1 = v2 = v3 = 1 and m = 10 in Example 5.2.
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Figure 9. Display of absolute error for x2(t), v1 = v2 = v3 = 1 and m = 10 in Example 5.2.
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Figure 10. Display of absolute error for x3(t), v1 = v2 = v3 = 1 and m = 10 in Example 5.2.

and

x(0) = x0, (5.15)

where γ1(τ) and γ2(τ) are given functions and the unknown functions x(τ) and u(τ) are the state and control functions,
respectively.

By Eq. (3.3), we can apply the following approximations:

0Tτ
αx(τ) ≈ cTΨm(τ), (5.16)

u(τ) ≈ bTΨm(τ), (5.17)

γ1(τ) ≈ γT1 Ψm(τ), (5.18)

γ2(τ) ≈ γT2 Ψm(τ), (5.19)

where c, b, γ1, γ2 ∈ R(m+1)×1.
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From Eq. (2.3), Eq. (5.16), Corollary 3.3, and Eq. (4.5)

x(τ) = 0I
α
τ T

α
τ x(τ) + x0

≈ 0I
α
τ

(
cTΨm(τ)

)
+ x0ΛTmΨm(τ) (5.20)

= cT 0I
α
τ Ψm(τ) + x0ΛTmΨm(τ) ≈

(
cTFα + x0ΛTm

)︸ ︷︷ ︸
cTα

Ψm(τ),

where Λm = [1, 1, . . . , 1]
T︸ ︷︷ ︸

m+1

.

Thus, the problem Eq. (5.13)-(5.15) is converted to:

Min
1

2

∫ 1

0

(
cTαΨm(τ)Ψm(τ)T cα + bTΨm(τ)Ψm(τ)T b

)
dτ, (5.21)

with constraint

cTΨm(τ) = γT1 Ψm(τ)Ψm(τ)T cα + γT2 Ψm(τ)Ψm(τ)T b. (5.22)

So,

Min M̃(c, b) =
1

2
cTα

(∫ 1

0

Ψm(τ)Ψm(τ)T dτ

)
cα +

1

2
bT
(∫ 1

0

Ψm(τ)Ψm(τ)T dτ

)
b

=
1

2
cTαΘcα +

1

2
bTΘb. (5.23)

where Θ ∈ R(m+1)×(m+1) is called dual matrix based on the Bernstein basis and

Θi+1,j+1 =

∫ 1

0

ξi,m(τ)ξj,m(τ)dτ =

(
m
i

)(
m
j

)
(2m+ 1)

(
2m
i+j

) , i, j = 0, 1, · · ·m.

Moreover, applying Corollary 3.10 in Eq. (5.22) we get

cTΨm(τ) = Ψm(τ)T γ̂1cα + Ψm(τ)T γ̂2b. (5.24)

Now, we can get the following system from Eq. (5.24) as:

c− γ̂1cα − γ̂2b = 0. (5.25)

Thus, the problem Eqs. (5.13)-(5.15) is converted to the following optimization:

MinM̃(c, b) =
1

2
cTαΘcα +

1

2
bTΘb, (5.26)

subject to

c− γ̂1cα − γ̂2b = 0. (5.27)

Now, we apply the Lagrange multipliers method for solving Eqs. (5.26) and (5.27). Thus, the Lagrange function is
defined as:

L(c, b, λ) =
1

2
cTαΘcα +

1

2
bTΘb+ λ̂T (c− γ̂1cα − γ̂2b) = 0. (5.28)



14 M. ALIPOUR

Table 3. The absolute error bound and absolute error in norm 2 for m=5, 10 in Example 5.3.

x,u Absolute error bound m=5 Absolute error m=5 Absolute error bound m=10 Absolute error m=10

x 3.08167× 10−3 1.72923× 10−6 2.31652× 10−7 7.72653× 10−12

u 1.18896× 10−3 5.23094× 10−7 1.02666× 10−7 3.24623× 10−12

Table 4. Estimated target values of M for m=5, 10 in Example 5.3.

α 0.7 0.8 0.9 1

M for m=5 0.09357636173418982 0.12855193621636385 0.1621058117640739 0.1929092980927092
M for m=10 0.09262399096041918 0.12828787160106003 0.16206999588757753 0.19290929809289678

Exact - - - 0.19290929809316937

From the necessary conditions for the extremum we have:

∂L

∂c
= 0, (5.29)

∂L

∂b
= 0, (5.30)

∂L

∂λ
= 0. (5.31)

Finally, by the system Eqs. (5.29)-(5.31) we obtain c, b and λ. Then from Eqs. (5.20) and (5.17) we can obtain the
approximate solutions for x(τ) and u(τ), respectively.

Example 5.3. Consider the CFOCP as (in Caputo sense [2], [18])

Min M =
1

2

∫ 1

0

(
x2(τ) + u2(τ)

)
dτ,

subject to

0t
αx(τ) = −x(τ) + u(τ),

with

x(0) = 1.

For α = 1, this problem has the exact solution

x(τ) = cosh(
√

2τ) + ω sinh(
√

2τ),

u(τ) = (1 +
√

2ω) cosh(
√

2τ) + (
√

2 + ω) sinh(
√

2τ),

where ω = − cosh(
√

2)+
√

2 sinh(
√

2)√
2 cosh(

√
2)+sinh(

√
2)

.

Figures 11 and 12 display the approximate solutions for x(τ), u(τ) withm = 10 and different orders of α, respectively.
The absolute error function for m = 10 and α = 1 are plotted in Figures 13 and 14. From these results, we find out
that as α → 1, the approximations approach to the exact solutions for α = 1 as expected. To show the validity of
the obtained error bound, the absolute error bound and absolute error in norm 2 for m = 10 are reported in Table 3.
Moreover, in Table 4, we reported the estimated target values of M for m = 10.
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Figure 11. Plot of x(t) for m = 10 and different orders α in Example 5.3.
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Figure 12. Plot of u(t) for m = 10 and different orders α in Example 5.3.
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Figure 13. Display of absolute error for x(t), α = 1 and m = 10 in Example 5.3.
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Figure 14. Display of absolute error for u(t), α = 1 and m = 10 in Example 5.3.
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Figure 15. Plot of x(t) for m = 10 and different orders α in Example 5.4.

Example 5.4. In this example we consider the CFOCP (in Caputo sense [2], [18])

Min M =
1

2

∫ 1

0

(
x2(τ) + u2(τ)

)
dτ,

subject to

0T
αx(τ) = τx(τ) + u(τ),

with x(0) = 1.
We depict the approximations of x(t) and u(t) by present method in Figures 15 and 16, respectively for α =

0.7, 0.8, 0.9, 1 . As we have seen in the last examples, we find out that as α → 1, the approximations approach to
the exact solutions for α = 1. Moreover, in Table 5, we reported the estimated target values of M for m = 10.

5.3. Space conformable fractional telegraph equation. Now we use the operational matrices method for solving
the space conformable fractional telegraph as follows

∂2u(t, x)

∂t2
+ p

∂u(t, x)

∂t
+ q2u(t, x) = 0T

2α
x u(t, x) + f(t, x), (5.32)
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Figure 16. Plot of u(t) for m = 10 and different orders α in Example 5.4.

Table 5. Estimated target values of M for m=5, 10 in Example 5.4.

α 0.7 0.8 0.9 1

M for m=5 0.25696525870031905 0.3516528108742918 0.428573636903991 0.4842676963077697
M for m=10 0.2510608732700348 0.3499612072482705 0.4283557216404006 0.4842676962267954

with conditions

u(t, 0) = f1(t), (5.33)

ux(t, 0) = f2(t), (5.34)

where p, q are constants and also 0.5 < α ≤ 1, x, t ∈ [0, 1]. Now we can approximate 0T
α
x u(t, x) by Corollary 3.7 as

follows:

0T
2α
x u(t, x) ≈ Ψm(t)TKΨm(x), (5.35)

where K is unknown matrix. Applying conformable fractional integration of order α with respect to x on Eq. (5.35),
we get:

0I
2α
x 0T

2α
x u(t, x) ≈ Ψm(t)TKF2αΨm(x), (5.36)

so, we have

u(t, x)− (C1 + xC2) ≈ Ψm(t)TKF2αΨm(x). (5.37)

The conditions u(t, 0) = f1(t), ux(t, 0) = f2(t) yield C1 = f1(t), C2 = f2(t) and Eq. (5.37) can be reduced as

u(t, x) ≈ Ψm(t)TKFαΨm(x) + f1(t) + xf2(t). (5.38)

From Corollary 3.7 we approximate f1(t) + xf2(t, x) and f(t, x) as following

f1(t) + xf2(t) ≈ Ψm(t)TG1Ψm(x), (5.39)

f(t, x) = Ψm(t)TG2Ψm(x), (5.40)

where G1, G2 are known matrices. By using Eqs. (5.38)-(5.40) we can write

u(t, x) ≈ Ψm(t)T (KF2α +G1) Ψm(x). (5.41)
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Table 6. The absolute error bound and absolute error in norm 2 for m=8 in Example 5.5.

α Absolute error bound Absolute error

0.8 1.69312× 10−3 9.03679× 10−5

0.9 1.69312× 10−3 1.45858× 10−5

1 1.69312× 10−3 1.27606× 10−15

In other hand, from section 5 in [26] or section 4 in [7] for α = 1 we can apply the following approximations

∂u(t, x)

∂t
≈ Ψm(t)TDT (KF2α +G1) Ψm(x), (5.42)

and

∂2u(t, x)

∂t2
≈ Ψm(t)T

(
D2
)T

(KF2α +G1) Ψm(x), (5.43)

where D is the standard derivative operational matrix based on Bernstein basis, i.e.

d

dx
Ψm(x) ≈ DΨm(x). (5.44)

Finally, using the approximations Eq. (5.35), and Eqs. (5.40)-(5.43), the problem Eqs. (5.32)-(5.34) reduced as
follows

Ψm(t)T
(
D2
)T

(KF2α +G1) Ψm(x) + pΨm(t)TDT (KF2α +G1) Ψm(x) + q2Ψm(t)T (KF2α +G1) Ψm(x)

= Ψm(t)TKΨm(x) + Ψm(t)TG2Ψm(x), (5.45)

which can be written as

Ψm(t)T
((
D2
)T

(KF2α +G1) + pDT (KF2α +G1) + q2 (KF2α +G1)−K −G2

)
Ψm(x) = 0. (5.46)

So, we have

(
D2
)T

(KF2α +G1) + pDT (KF2α +G1) + q2 (KF2α +G1)−K −G2 = 0, (5.47)

which is an algebraic equation can be easily solved for the unknown matrix K. Applying the value of K in Eq.
(5.41) we obtain the approximate solution of the problem Eqs. (5.32)-(5.34).

Example 5.5. Consider the following space conformable fractional telegraph equation

∂2u(t, x)

∂t2
+
∂u(t, x)

∂t
+ u(t, x) = 0T

2α
x u(t, x) + 2x3 + 2tx3 + t2x3 − 6t2x3−2α,

with conditions

u(t, 0) = 0,

ux(t, 0) = 0.

where 0.5 < α ≤ 1 and t, x ∈ [0, 1]. This problem has the exact solution u(t, x) = x3t2 . In Figure 17, we can observe
from the contour of absolute error for α = 1 and m = 8 that the error is less than 10−15. Also we apply the present
method to obtain the approximate solutions for the fractional values α = 0.8, 0.9 and m = 8. The plots of contour
of absolute errors for approximate solutions are shown in Figures 18 and 19. The results show that the approximate
solutions are in good agreement with the exact solutions for α = 0.8, 0.9, 1. To show the validity of the obtained error
bound, the absolute error bound and absolute error in norm 2 for m = 8 are reported in the Table 6.
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Figure 19.

6. Conclusion

In this paper, we proposed the best approximations for one and two variable functions based on the Bernstein basis.
Then, we introduced an algorithm to obtain the conformable fractional integral operational matrix by the Bernstein
polynomials. To show the efficiency of the proposed method in implementation, we used the obtained results for solving
some interesting problems in engineering, for example, the nonlinear system of conformable fractional differential
equations, the conformable fractional optimal control problem and the space conformable fractional telegraph equation.
The results are shown that the proposed method simply works and is very applicable. Also, we have seen in examples
that the approximate solution approaches to the solutions for integer order of derivate when the order of derivative
approaches to the integer order one, as expected. This method is extensible for solving a wide class of problems in
engineering. For example, we can point to problems that dealing with the multi-order conformable fractional derivative
or the conformable fractional partial differential equations in higher dimensional.
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Appendix:

The approximations can be extended to the three-dimensional space and the three-dimensional Bernstein polyno-
mials of order M = m + 1 are defined as a product function of three Bernstein polynomials

ξi,ik(t, x, y) = ξim(t)ξi,m(x)ξkmm(y), i, j, k = 0, 1, 2, . . . ,m. (1)

The orthogonality condition of ξi,i,k(t, x, y) is
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∫ 1

0

∫ 1

0

∫ 1

0

ξim(t)ξjm(x)ξkm(y)dpm(t)dq,m(x)drjm(y)dtdxdy =

{
1 if i = p, j = q, k = r
0 o.w.

(2)

Any f(t, x, y) ∈ C
(
[0, 1]3

)
can be approximated by the polynomials ξi,j,k(t, x, y) as follows:

f(t, x, y) ≈
m∑
i=0

m∑
i=0

m∑
k=0

ci,j,kξim(t)ξjm(x)ξkm(y), (3)

where

ci,j,k =

∫ 1

0

∫ 1

0

∫ 1

0

f(t, x, y)dpm(t)dq m(x)dvm m(y)dtdxdy. (4)

For simplicity, we use the notation cr,n = ci,j,k where r = i+ 1 and n = Mj + k + 1, then rewrite (3) as follows:

f(t, x, y) ≈
M∑
r=1

M2∑
n=1

cr,nξr−1(t)ξn(x, y) = ψ(t)TKψ̂(x, y). (5)

where KM×M2 is the coefficient matrix, ψ(t) = (ξ0,m(t), ξ1,m(t), . . . , ξm,m(t))
T

and

ψ̂(x, y) = (ψ11(x, y), . . . , ψ1M (x, y), ψ21(x, y), . . . ψ2M (x, y), . . . ψMM (x, y))
T
, (6)

where

ψi+1,j+1(x, y) = ξim(x)ξim(y), i, j = 0, 1, 2, . . . ,m. (7)
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