تعداد نشریات | 44 |
تعداد شمارهها | 1,323 |
تعداد مقالات | 16,269 |
تعداد مشاهده مقاله | 52,952,668 |
تعداد دریافت فایل اصل مقاله | 15,623,477 |
Numerical multiscale methods to determine the coefficient in diffusion problems | ||
Computational Methods for Differential Equations | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 14 دی 1403 اصل مقاله (2.42 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22034/cmde.2024.59745.2547 | ||
نویسندگان | ||
Marzieh Tavakolian1؛ Ali Hatam* 1؛ Morteza Fotouhi2؛ Edmund Chadwick3 | ||
1Department of Applied Mathematics, Amirkabir University of Technology, No. 350, Hafez Ave, Valiasr Square, Tehran, Iran 1591634311. | ||
2Department of Mathematical Sciences, Sharif University of Technology, Tehran 11365-9415, Iran. | ||
3School of Science, Engineering & Environment, University of Salford, Salford, M5 4WT, UK. | ||
چکیده | ||
Here we study the inverse problem of determining the highly oscillatory coefficient $a^\varepsilon$ in some PDEs of the form $ u^\varepsilon_t - \nabla .(a^\varepsilon(x) \nabla u^\varepsilon)=0$, in a bounded domain $\Omega \subset\mathbb{R}^d $; $\varepsilon$ indicates the smallest characteristic wavelength in the problem ($0 < \varepsilon \ll 1$). Assume that $g(t, x)$ is given input data for $(t, x) \in (0,T) \times\partial \Omega$ and the associated output is the thermal flux $a^\varepsilon(x)\nabla u(T_0,x)\cdot n(x)$ measured on the boundary at a given time $T_0$. Because of ill-posedness of the inverse problem, we reduce the dimension by seeking effective parameters. For forward solver, we apply either analytic homogenization or some numerical multiscale methods such as FE-HMM and LOD method. | ||
کلیدواژهها | ||
35B27؛ 35K20؛ 35R30؛ 65L60؛ 65M32 | ||
آمار تعداد مشاهده مقاله: 53 تعداد دریافت فایل اصل مقاله: 82 |