
تعداد نشریات | 44 |
تعداد شمارهها | 1,340 |
تعداد مقالات | 16,468 |
تعداد مشاهده مقاله | 53,445,170 |
تعداد دریافت فایل اصل مقاله | 16,005,276 |
بهینه سازی مبادله کن گرمایی لوله پره دار با استفاده از روش جدید شاهین هریس و بررسی تاثیر استفاده از نانوذره بر تحلیل ترمودینامیکی آن | ||
مهندسی مکانیک دانشگاه تبریز | ||
دوره 54، شماره 4 - شماره پیاپی 109، بهمن 1403، صفحه 57-65 اصل مقاله (402.35 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/jmeut.2024.63517.3461 | ||
نویسندگان | ||
سید احسان علوی* 1؛ ناصر صادقیان1؛ خلیل هرمزی2 | ||
1استادیار، گروه مهندسی مکانیک، دانشگاه شهید چمران اهواز- پردیس صنعتی شهدای هویزه، دشت آزادگان، ایران | ||
2دانشجوی ارشد، گروه مهندسی مکانیک، دانشگاه شهید چمران اهواز- پردیس صنعتی شهدای هویزه، دشت آزادگان، ایران | ||
چکیده | ||
مبادلهکنهای گرمایی لوله پرهدار در بسیاری از کارخانجات صنعتی مورد استفاده قرار میگیرند. صرفهجویی در مصرف انرژی و کاهش برگشتناپذیریها در استفاده از این تجهیزات اهمیت بسیاری دارد. در این تحقیق دو نانوذره گرافن و نقره در سیال درون لوله مورد استفاده قرار میگیرند و تاثیر آنها بر پارامترهای ترمودینامیکی مبادلهکن گرمایی مطالعه میشود. همچنین بهینهسازی چندهدفه مبادلهکن گرمایی لوله پرهدار با توابع هدف ضریب کلی انتقال گرما و افت فشار سیال سرد با استفاده از روش جدید الگوریتم شاهین هریس انجام میگیرد. نتایج تحقیق نشان داد که با افزایش کسر حجمی هر دو نانوذره، شاخص کارآیی مبادلهکن گرمایی کاهش مییابد. همچنین مشاهده شد که در یک کسر حجمی معین از نانوذره، استفاده از نانوذره نقره نسبت به نانوذره گرافن تلفات انترنزی کمتری خواهد داشت. نتایج بهینهسازی نشان داد که در کسر حجمی نانوذره گرافن 0223/0، ضریب کلی انتقال گرما در مقایسه با مقدار اولیه آن قبل از بهینهسازی حدود 5/2 برابر افزایش و افت فشار سیال سرد نیز به میزان %58 کاهش مییابد. | ||
کلیدواژهها | ||
نانوذره؛ بهینه سازی؛ مبادله کن گرمایی لوله پره دار؛ افت فشار؛ برگشت ناپذیری؛ انتقال گرما | ||
مراجع | ||
[1] Bošnjaković M, Muhič S. Numerical analysis of tube heat exchanger with perforated star-shaped fins. Fluids. 2020 Dec 13; 5(4):242. [2] Hajabdollahi H, Ahmadi P, Dincer I. Multi-objective optimization of plain fin-and-tube heat exchanger using evolutionary algorithm. Journal of thermophysics and heat transfer. 2011 Jul; 25(3):424-31.
[3] Xie G, Wang Q, Sunden B. Application of a genetic algorithm for thermal design of fin-and-tube heat exchangers. Heat Transfer Engineering. 2008 Jul 1; 29(7):597-607. [4] Wang CC, Webb RL, Chi KY. Data reduction for air-side performance of fin-and-tube heat exchangers. Experimental Thermal and Fluid Science. 2000 May 1; 21(4):218-26. [5] Raja BD, Patel V, Jhala RL. Thermal design and optimization of fin-and-tube heat exchanger using heat transfer search algorithm. Thermal Science and Engineering Progress. 2017 Dec 1; 4:45-57. [6] Bhuiyan AA, Amin MR, Islam AS. Three-dimensional performance analysis of plain fin tube heat exchangers in transitional regime. Applied Thermal Engineering. 2013 Jan 10; 50(1):445-54. [7] Rahimi M, Ranjbar AA, Ganji DD, Sedighi K, Hosseini MJ. Experimental Investigation of Phase Change inside a Finned‐Tube Heat Exchanger. Journal of Engineering. 2014 Oct; 2014(1):641954. [8] Zhao Y, Liu HY, Zhang L, Wang CC. Effect of chevron angle on the thermofluids performance of shell-and-plate heat exchangers–A numerical approach. Applied Thermal Engineering. 2024 Feb 15; 239:122061. [9] Çolak AB, Mercan H, Açıkgöz Ö, Dalkılıç AS, Wongwises S. Prediction of nanofluid flows’ optimum velocity in finned tube-in-tube heat exchangers using artificial neural network. Kerntechnik. 2023 Feb 23;88(1):100-13. ]10[ اکبری کنگرلویی ر، عباسعلیزاده رنجبری م، پستهای س م، اسمعیلی سنگری م، شبیه سازی جریان تک فازی و دوفازی نانوسیال آب- اکسید تیتانیم در مبادلهکن گرمایی دولوله ای جریان مخالف و بررسی عملکرد انتقال گرما و افت فشار در آن. مجله مهندسی مکانیک دانشگاه تبریز. 1399، د. 50، ش. 4، ص 29-35. [11] Raja BD, Patel V, Jhala RL. Thermal design and optimization of fin-and-tube heat exchanger using heat transfer search algorithm. Thermal Science and Engineering Progress. 2017 Dec 1; 4:45-57. [12] Alavi SE, Moory Shirbani M. Multi-objective Optimization of Double pipe Heat Exchangers from the Point of View of Efficiency and Economics. Iranian Journal of Chemistry and Chemical Engineering. 2024 Jul 1; 43(7):2786-2799. [13] Alavi SE, Moory Shirbani M. Optimization and Comprehensive Investigation of the Effect of Geometrical Parameters on Entransy, Exergy and Entropy in Finned Tube Heat Exchangers. Iranian Journal of Chemistry and Chemical Engineering. 2024 Jul 1; 43(7):2800-2814. [14] Alavi SE, Shirbani MM, Tondro MK. Optimization of gasket-plate heat exchanger based on entransy principles using new method of Harris Hawks. Multiscale and Multidisciplinary Modeling, Experiments and Design. 2024 Mar; 7(1):83-96. [15] Moori Shirbani M, Alavi SE, Koochak Tondro M. Minimizing the entropic potential losses number in a gasket-plate heat exchanger. Iran. J. Chem. Chem. Eng. 2023 Mar; 42(3):1006-1016. [16] Alavi SE, Moori Shirbani M, Koochak Tondro M. Exergy-economic optimization of gasket-plate heat exchangers. Journal of Computational Applied Mechanics. 2023 Jun 1; 54(2):254-67. [17] Wang XQ, Mujumdar AS. A review on nanofluids-part I: theoretical and numerical investigations. Brazilian journal of chemical engineering. 2008 Dec; 25:613-30. [18] Fares M, Mohammad AM, Mohammed AS. Heat transfer analysis of a shell and tube heat exchanger operated with graphene nanofluids. Case Studies in Thermal Engineering. 2020 Apr 1; 18:100584. ]9[ موری شیربانی م، علوی س ا، مقایسه عملکرد فرکانسی بهینه سازی شدة برداشت کننده های انرژی تک لایۀ مگنتو- الکترو- الاستیک و پیزوالکتریک با استفاده از الگوریتم بهینه سازی شاهین هریس. مجله مهندسی مکانیک دانشگاه تبریز. 1403، د. 107، ش. 2، ص 51-60. [20] Incropera FP, DeWitt DP, Bergman TL, Lavine AS. Fundamentals of heat and mass transfer. New York: Wiley; 1996 Feb 16. | ||
آمار تعداد مشاهده مقاله: 122 تعداد دریافت فایل اصل مقاله: 22 |