- [1] B. P. Allahverdiev and H. Tuna, Spectral analysis of Hahn–Dirac system, Proyecciones (Antofagasta, On line), 40(6) (2021), 1547-1567.
- [2] B. P. Allahverdiev and H. Tuna, Resolvent operator of singular dirac system with transmission conditions, Rad Hrvat. Akad. Znan. Umjet. Mat. Znan., 23(538) (2019), 85-105.
- [3] B. P. Allahverdiev and H. Tuna, Properties of the resolvent of singular q-Dirac operators, Electr. J. Differ. Equat., 2020(3) (2020), 1-13.
- [4] R. K. Amirov, On a system of Dirac differential equations with discontinuity conditions inside an interval, Ukrain. Math. J., 57(5) (2005), 712-727.
- [5] M. H. Annaby, A. E. Hamza, and K. A. Aldwoah, Hahn difference operator and associated Jackson–N¨orlund integrals, J. Optim. Theory Appl., 154 (2012), 133-153.
- [6] M. H. Annaby, A. E. Hamza, and S. D. Makharesh, A Sturm–Liouville theory for Hahn difference operator, in: Xin Li, Zuhair Nashed (Eds.), Frontiers of Orthogonal Polynomials and q-Series, World Scientific, Singapore, (2018), 35-84.
- [7] K. Aydemir, H. Olğar, and O. Sh. Mukhtarov, The principal eigenvalue and the principal eigenfunction of a boundary-value-transmission problem, Turkish J. Math. Comput. Sci., 11(2) (2019), 97-100.
- [8] K. Aydemir, H. Olgar, O. Sh. Mukhtarov, and F. Muhtarov, Differential operator equations with interface conditions in modified direct sum spaces, Filomat, 32(3) (2018), 921-931.
- [9] Y. Aygar and E. Bairamov, Scattering theory of impulsive Sturm–Liouville equation in quantum calculus, Bull. Malays. Math. Sci. Soc., 42 (2019), 3247-3259.
- [10] M. Bohner and S. Cebesoy, Spectral analysis of an impulsive quantum difference operator, Math. Meth. Appl. Sci., 42 (2019), 5331-5339.
- [11] S¸. Faydaoğlu and G. Sh. Guseinov, Eigenfunction expansion for a Sturm–Liouville boundary value problem with impulse, Int. J. Pure Appl. Math., 8(2) (2003), 137-170.
- [12] Y. Güldü, On discontinuous Dirac operator with eigenparameter dependent boundary and two transmission conditions, Bound. Value Probl., 2016(135) (2016), 1-19.
- [13] W. Hahn, Beiträage zur Theorie der Heineschen Reihen, Math. Nachr., 2 (1949), 340-379, (in German).
- [14] W. Hahn, Ein Beitrag zur Theorie der Orthogonal polynome, Monatsh. Math., 95 (1983), 19-24.
- [15] F. Hira, Dirac system associated with Hahn difference operator, Bull. Malays. Math. Sci. Soc., 43 (2020), 34813497.
- [16] D. Karahan and K. R. Mamedov, On a q-boundary value problem with discontinuity conditions, Vestn. YuzhnoUral. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 13(4) (2021), 5-12.
- [17] D. Karahan and K. R. Mamedov, On a q-analogue of the Sturm–Liouville operator with discontinuity conditions, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauk., 26(3) (2022), 407-418.
- [18] D. Karahan and K. R. Mamedov, Sampling theory associated with q-Sturm–Liouville operator with discontinuity conditions, J. Contemp. Appl. Math., 10(2) (2020), 40-48.
- [19] B. Keskin and A. S. Ozkan, Inverse spectral problems for Dirac operator with eigenvalue dependent boundary and jump conditions, Acta Math. Hungarica, 130 (2011), 309-320.
- [20] H. Koyunbakan and E. S. Panakhov, Solution of a discontinuous inverse nodal problem on a finite interval, Math. Comput. Model., 44(1-2) (2006), 204-209.
- [21] B. M. Levitan and I. S. Sargsjan, Sturm–Liouville and Dirac operators, Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht, 1991 (translated from the Russian).
- [22] J. Manafian and M. Lakestani, Optical soliton solutions for the Gerdjikov–Ivanov model via tan(ϕ/2)-expansion method, Optik, 127(20) (2016), 9603-9620.
- [23] J. Manafian and M. Lakestani, Abundant soliton solutions for the Kundu–Eckhaus equation via tan(ϕ/2)-expansion method, Optik, 127(14) (2016), 5543-5551.
- [24] J. Manafian and M. Lakestani, N-lump and interaction solutions of localized waves to the (2 + 1)-dimensional variable-coefficient Caudrey–Dodd–Gibbon–Kotera–Sawada equation, Journal of Geometry and Physics, 150 (2020), 103598.
- [25] J. Manafian, L. A. Dawood, and M. Lakestani, New solutions to a generalized fifth-order KdV like equation with prime number p = 3via a generalized bilinear differential operator, Partial Differential Equations in Applied Mathematics, 9 (2024), 100600.
- [26] O. S. Mukhtarov, Discontinuous boundary-value problem with spectral parameter in boundary conditions, Turkish J. Math., 18 (1994), 183-192.
- [27] M. A. Naimark, Linear Differential Operators, 2nd edn., Nauka, Moscow,1969; English transl. of 1st. edn., 1,2, New York, 1968.
- [28] A. S. Ozkan and R. Kh. Amirov, An interior inverse problem for the impulsive Dirac operator, Tamkang J. Math., 42(3) (2011), 259-263.
- [29] A. Zettl, Adjoint and self-adjoint boundary value problems with interface conditions, SIAM J. Appl. Math., 16(4) (1968), 851-859.
- [30] M. Zhang, X. Xie, J. Manafian, O. A. Ilhan, and G. Singh, Characteristics of the new multiple rogue wave solutions to the fractional generalized CBS-BK equation, Journal of Advanced Research, 38 (2022), 131-142.
|