- افشار، پروین، منوچهری، صلاحالدین و امانی، رامین (1402). نااطمینانی اقتصاد کلان، ریسک سیاسی و نوسانات بازار ارز در ایران. فصلنامه نظریههای کاربردی اقتصاد، 10(3)، 102-67.
- آقانیا، پریسا، حیدری، حسن و جهانگیری، شهاب (1401). بررسی تأثیر شوکهای سیاست پولی بر رشد اقتصادی و تورم در اقتصاد ایران: شواهد تجربی بر اساس مدل TVP-SFAVAR-SV. فصلنامه نظریههای کاربردی اقتصاد، 9(4)، 61-96.
- آهنگری آهنگرکلائی، مرتضی، سبطی، علی و یعقوبی، مهدی (1402). ساخت واژگان به صورت خودکار برای تحلیل نظرات در حوزه بورس. فصلنامه پردازش علائم و دادهها، 20(2)، 3-20.
- رجبی، زینب، ولوی، محمدرضا و حورعلی، مریم (1401). مروری بر روشهای تحلیل احساس در متون فارسی. فصلنامه پردازش علائم و دادهها، 19(2)، 107-132.
- زارعی، عظیم، فیض، داود و طاهری، غزاله (1399). ارائه چارچوب هوشمندی بازار اجتماعی مبتنی بر وب 0/2 با استفاده از تکنیک متنکاوی در وبسایتهای رسانههای اجتماعی (مورد مطالعه: تحلیل رقابتی در بین برندهای سامسونگ و امرسان). فصلنامه پژوهشهای مدیریت در ایران، 24(4)، 98-125.
- سوری، علی (1400). اقتصاد سنجی پیشرفته: جلد دوم. انتشارات نور علم، تهران.
- کرامتفر، عبدالصمد (1400). مدلسازی چند جریانی زمینه نظرات برای تحلیل احساس. رساله دکتری. دانشگاه قم.
- نوفرستی، محمد (1400). اقتصاد سنجی کاربردی دادههای سری زمانی. انتشارات دانشگاه شهید بهشتی، تهران.
- Afshar, P. A., Manochehri, S., & Amani, R. (2023). Macroeconomic Uncertainty, Political Risk and Exchange Rate Market Fluctuations in Iran. Quarterly Journal of Applied Theories of Economics, 10(3), 67-102 (In Persian).
- Aghania, P., Heidari, H., & Jahangiri, Sh. (2023). Investigating the Impact of Monetary Policy Shocks on Economic Growth and Inflation in the Iranian Economy: Empirical Evidence Based on the TVP-TVP-SFAVAR-SV Model. Quarterly Journal of Applied Theories of Economics, 9(4), 61-96 (In Persian).
- Aguilar, P., Ghirelli, C., Pacce, M., & Urtasun, A. (2021). Can news help economic sentiment?. An application in COVID-19 times. Economics Letters, 199, 109730.
- Ahangari, M., Sebti, A., & Yaghoubi, M. (2023). Automatically generate lexicon for the Persian stock market. Signal and Data Processing, 20(2), 3-20 (In Persian).
- Algaba, A., Ardia, D., Bluteau, K., Borms, S., & Boudt, K. (2020). Econometrics meets sentiment: An overview of methodology and applications. World Bank Economic Review, 8 (3), 351-371.
- Angeletos, G. M., Collard, F., & Dellas, H. (2018). Quantifying confidence. Econometrica, 86(5), 1689-1726.
- Aprigliano, V., Emiliozzi, S., Guaitoli, G., Luciani, A., Marcucci, J., & Monteforte, L. (2023). The power of text-based indicators in forecasting Italian economic activity. International Journal of Forecasting, 39(2), 791-808.
- Ardia, D., Bluteau, K., & Boudt, K. (2019). Questioning the news about economic growth: Sparse forecasting using thousands of news-based sentiment values. International Journal of Forecasting, 35(4), 1370-1386.
- Ash, E., & Hansen, S. (2023). Text algorithms in economics. Annual Review of Economics, 15(1), 659-688.
- Ashwin, J., Kalamara, E., & Saiz, L. (2021). Nowcasting euro area GDP with news sentiment: a tale of two crises. Journal of Applied Econometrics, 1–19.
- Azqueta Gavaldon, A.(2020). Text-mining in macroeconomics: the wealth of words . Doctoral dissertation, University of Glasgow.
- Barbaglia, L., Consoli, S., & Manzan, S. (2024). Forecasting GDP in Europe with textual data. Journal of Applied Econometrics, 39(2), 338-355.
- Barbaglia, L., Frattarolo, L., Onorante, L., Pericoli, F. M., Ratto, M., & Pezzoli, L. T. (2023). Testing big data in a big crisis: Nowcasting under COVID-19. International Journal of Forecasting, 39(4), 1548-1563.
- Blei, D. M. (2012). Probabilistic topic models.Communications of the ACM, 55(4), 77-84.
- Bortoli, C., Combes, S., & Renault, T. (2018). Nowcasting GDP growth by reading newspapers. Economie et Statistique, 505(1), 17-33.
- Brosius, A., van Elsas, E. J., & de Vreese, C. H. (2020). Bad news, declining trust? Effects of exposure to economic news on trust in the European Union. International Journal of Public Opinion Research, 32 (2): 223–242.
- Bybee, L., Kelly, B. T., Manela, A., & Xiu, D. (2020). The structure of economic news. Tech. rep. NBER Working paper, 26648.
- Coase, R. H. (1960). The problem of social cost. Law Econ, 3,1–44
- Eshbaugh-Soha, M. (2010). The tone of local presidential news coverage. Political Communication, 27(2), 121-140.
- Ferrara, L., & Simoni, A. (2023). When are Google data useful to nowcast GDP? An approach via preselection and shrinkage.Journal of Business & Economic Statistics, 41(4), 1188-1202.
- Friedman, M., & Schwartz, A. J. (1963). A Monetary History of the United States: 1867–1960. Princeton, NJ: Princeton Univ Press.
- Galbraith, J. W., & Tkacz, G. (2018). Nowcasting with payments system data. International Journal of Forecasting, 34(2), 366-376
- Hemmatian, F., & Sohrabi, M.(2019).A survey on classification techniques for opinion mining and sentiment analysis. Artificial intelligence review, 52(3), 1495-1545.
- Hu, Y., & Yao, J. (2022). Illuminating economic growth. Journal of Applied Econometrics, 37(5), 896-919.
- Kalamara, E., Turrell, A., Redl, C., Kapetanios, G., & Kapadia, S. (2022). Making text count: economic forecasting using newspaper text. Journal of Applied Econometrics, 37(5), 896-919.
- Keeney, M., Kennedy, B., & Liebermann, J. (2012). The value of hard and soft data for short-term forecasting of GDP. Economic Letters Series, 11/EL/12, Central Bank of Ireland.
- Keramatfar, A. (2021). Multi-stream modeling of comments’ contexts for sentiment analysis. Ph.D. Thesis, University of Qom (In Persian).
- Lourenço, N., & Rua, A. (2021). The Daily Economic Indicator: tracking economic activity daily during the lockdown. Economic Modelling,100, 105500.
- Manchado Marcos, L. (2023). Nowcasting with Alternative Data (Bachelor's thesis, Universitat Politècnica de Catalunya).
- Munezero, M., Montero, C. S., Sutinen, E., & Pajunen, J. (2014). Are they different? Affect, feeling, emotion, sentiment, and opinion detection in text. IEEE transactions on affective computing, 5(2), 101-111.
- Noferesti, M. (2021). Applied Econometric Time Series. Shahid Beheshti University Press, Tehran (In Persian).
- Park, H., & Konishi, S. (2016). Robust logistic regression modelling via the elastic net-type regularization and tuning parameter selection. Journal of Statistical Computation and Simulation,86(7), 1450-1461.
- Rajabi, Z., Valavi, M., & Hourali, M. (2022). Sentiment analysis methods in Persian text: A survey. Signal and Data Processing, 19(2), 107-132 (In Persian).
- Reisenbichler, M., & Reutterer, T. (2019). Topic modeling in marketing: recent advances and research opportunities. Journal of Business Economics, 89(3), 327-356.
- Richardson, A., van Florenstein Mulder, T., & Vehbi, T. (2021). Nowcasting GDP using machine-learning algorithms: A real-time assessment. International Journal of Forecasting,37(2), 941-948.
- Rothman, T., & Yakar, C. (2019). Empirical Analysis Тowards the Effect of Social Media on Cryptocurrency Price and Volume. European Scientific Journal, ESJ, 15, 31-52.
- Shapiro, A. H., Sudhof, M., & Wilson, D. J. (2022). Measuring news sentiment. Journal of econometrics, 228(2), 221-243.
- Shiller, R. J. (2020). Narrative economics: How stories go viral and drive major economic events. Princeton University Press.
- Souri, A. (2021). Advanced Econometrics: Volume Two. Noor Elm Press, Tehran (In Persian).
- Strycharz, J., Strauss, N., & Trilling, D. (2018). The role of media coverage in explaining stock market fluctuations: Insights for strategic financial communication. International Journal of Strategic Communication, 12(1), 67-85.
- Thelwall, M., Buckley, K., Paltoglou, G., Cai, D., & Kappas, A. (2010). Sentiment strength detection in short informal text. Journal of the American society for information science and technology, 61(12), 2544-2558.
- Thorsrud, L. A. (2020). Words are the new numbers: A newsy coincident index of the business cycle. Journal of Business & Economic Statistics,38(2), 393-409.
- Valdez, D., Pickett, A. C., & Goodson, P. (2018). Topic modeling: latent semantic analysis for the social sciences. Social Science Quarterly, 99(5), 1665-1679.
- Wang, H., Wang, J., Zhang, Y., Wang, M., & Mao, C. (2019). Optimization of Topic Recognition Model for News Texts Based on LDA. Digit. Inf. Manag.,17(5), 257.
- Wilcox, R. R. (2019). Multicolinearity and ridge regression: results on type I errors, power and heteroscedasticity. Journal of applied statistics, 46(5), 946-957.
- Yoon, J. (2021). Forecasting of real GDP growth using machine learning models: Gradient boosting and random forest approach. Computational Economics, 57(1), 247-265
- Zarei, A., Feiz, D., & Taheri, Gh. (2021). Providing Social Market Intelligence Framework based on web 2.0 Using Text-Mining Technique on Social Media Websites (Case Study: Competitive Analysis between Samsung and Emersun Brands). Management Research in Iran, 24(4), 98-125 (In Persian).
|