
تعداد نشریات | 45 |
تعداد شمارهها | 1,364 |
تعداد مقالات | 16,741 |
تعداد مشاهده مقاله | 53,998,846 |
تعداد دریافت فایل اصل مقاله | 16,691,518 |
ارزیابی تغییرات شاخصهای جریان پرآبی و کمآبی در رودخانهای با رژیم جریان طبیعی (مطالعه موردی: حوضه آبریز بیطاس، بالادست رودخانه مهابادچای) | ||
هیدروژئومورفولوژی | ||
دوره 12، شماره 42، فروردین 1404، صفحه 98-81 اصل مقاله (1.99 M) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/hyd.2024.63568.1757 | ||
نویسندگان | ||
لیلا بابایی1؛ هیراد عبقری* 2؛ رئوف مصطفیزاده3 | ||
1دانشجوی دکتری گروه مرتع و آبخیزداری، دانشگاه ارومیه، ارومیه، ایران | ||
2دانشیار گروه مرتع و آبخیزداری، دانشکده منابع طبیعی، دانشگاه ارومیه، ارومیه، ایران | ||
3دانشیار گروه منابع طبیعی و عضو پژوهشکده مدیریت آب، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران | ||
چکیده | ||
وقوع دورههای کمآبی و پرآبی در حوضهها جزئی از رژیم رودخانه است. وقوع تغییرات جریان رودخانه و تشدید آن در سالهای اخیر بر تولید و بهرهبرداری از جریان رودخانهها و مدیریت آب تاثیر گذاشته است و مطالعه آن دارای اهمیت است. ارزیابی ویژگیهای مختلف رژیم جریان رودخانههای طبیعی از مواردی است که میتواند در شناخت تغییرات آبدهی جریان رودخانه در اثر تغییر مولفههای اقلیمی و مدیریت آن در شرایط خشکسالی مورد استفاده قرار گیرد. شناخت و ارزیابی رژیم جریان یک رودخانه را میتوان بر حسب شاخصهای مختلف قابل توصیف است. در پژوهش حاضر، تغییرات شاخصهای جریان پرآبی و کمآبی در حوضه بیطاس از زیرحوضههای مهابادچای با جریان طبیعی در بالادست سد مهاباد در بازه زمانی 1963 الی 2020 ارزیابی مورد ارزیابی قرار گرفته است. نتایج پژوهش نشان داد شاخص Number Spell در دوره پرآبی برابر 144 و در دوره کمآبی 253 است. شاخص Single Longest در دوره کمآبی 1635 و برای پرآبی 163 است. شاخصهای میانگین دبیهای پیک و میانگین مدت زمان میانگین اوج برای دورههای پرآبی 22/6 و برای دورههای کمآبی برابر 33/0 است. همچنین میانگین مدت برای پرآبی 29/6 و برای کمآبی 82/54 است. همچنین، بر اساس نتایج، شاخص کل مدت زمان پرآبیها در دامنه 3 تا 163 نوسان داشته و شاخص کل مدت زمان کمآبی برابر عدد 241 است. یافتههای پژوهش حاضر میتواند در درک تغییرات رژیم جریان طبیعی، تغییرات زمان و تعداد رویدادهای کمآبی و پرآبی و در نتیجه مدیریت بهینه دبی ورودی به سد مهاباد مورد استفاده قرار گیرد. | ||
کلیدواژهها | ||
رژیم جریان رودخانه؛ تغییرپذیری طبیعی؛ شاخصهای هیدرولوژیک؛ تحلیل جریان رودخانه؛ حوضه آبریز سد مهاباد | ||
مراجع | ||
Alipour, Hassan, Selajgeh, Moghadamnia, Khaligi Sigaroudi, Nasaji Zavareh. (2022). Analysis of the frequency and severity of floods under climate change scenarios in Ma'aref Imamah. Desert Ecosystem Engineering, 11(34), 127-141. An, Q., He, H., Nie, Q., Cui, Y., Gao, J., Wei, C., Xie, X., & You, J. (2020). Spatial and temporal variations of drought in InnerMongolia, China. Water, 12, 1715. (In Persian) Anchondo, C. 2018. Austin issues city-wide boil water notice; Calls for action to avoid running out of water. The Texas Tribune. Babaei, L., Parchami, N, Mostafazadeh, R. (2023). Estimation of temporal and spatial changes of flood and minimum flow indices extracted from flow continuity curve (FDC) in rivers of Ardabil province. Journal of Spatial Analysis Environmental Hazards, 10(1), 109-126. Bazrafshan, O., Mahmoudzadeh, F., Asgari Nezhad, A., & Bazrafshan, J. (2019). Adaptive evaluation of SPI, RDI, and SPEI indices in analyzing the trend of intensity, duration, and frequency of drought in arid and semi-arid regions of Iran. Irrigation Sciences and Engineering, 42(3), 117-131. (In Persian) Bessah, E., et al., 2020. Hydrological responses to climate and land use changes: The paradox of regional and local climate effect in the Pra River Basin of Ghana. Journal of Hydrology: Reg. Stud. 27, 100654. Dokhani, S., Izanloo, R, & Omidvar, I. (2023). Analysis of Check-dam effects on flow duration curve alteration of the Zarcheshmeh River- Hoonejan watershed, Isfahan Province. Hydrogeomorphology, 10(35), 135-120. (In Persian) Elagib, N. A., Al Zayed, I. S., Saad, S. A. G., Mahmood, M. I., Basheer, M., &Fink, A. H. (2021). Debilitating floods in the Sahel are becoming fre-quent. Journal of Hydrology, 599, 126362 Fang Sang, Y., Wang, Z., Liu, C. (2014). Comparison of the MK test and EMD method for trend identification in hydrological time Series. Journal of Hydrology, 510, 293-298. doi:10.1016/j.jhydrol.2013.12.039. Guo, Y., et al., 2019. Assessing socioeconomic drought based on an improved multivariate standardized reliability and resilience index. Journal of Hydrology. 568, 904–918. Kadioghlu, M., Sen, Z., (1998), Power-law relationship in describing temporal and spatial precipitation pattern in Turkey, Journal of Theoretical and Applied Climatology, 59: 93- 106. Kay, A. L., Griffin, A., Rudd, A. C., Chapman, R. M., Bell, V. A., & Arnell, N. W. (2021). Climate change effects on indicators of high and low river flow across Great Britain. Advances in Water Resources, 151, 103909 Klavins, M., & Rodinov, V. (2008). Long-term changes of river discharge regime in Latvia. Hydrology Research, 39(2), 133-141. Korhonen, J., & Kuusisto, E. (2010). Long-term changes in the discharge regime in Finland. Hydrology Research, 41(3-4), 253-268. Lazin, R., Shen, X., Moges, S., Anagnostou, E., 2023. The role of Renaissance dam in reducing hydrological extremes in the Upper Blue Nile Basin: Current and future climate scenarios. Journal of Hydrology. 616, 128753. Li, X., Zhong, B., Chen, J., Li, J., & Wang, H. (2024). Investigation of 2020− 2022 Extreme Floods and Droughts in Sichuan Province of China Based on Joint Inversion of GNSS and GRACE/GFO Data. Journal of Hydrology, 130868. Marsh, N 2003, Time Series Analysis Module: RiverAnalysis Package, Cooperative Research Centrefor Catchment Hydrology, Monash University, Melbourne Australia. http://www.toolkit.net.au Marsh, N. (2004) RAP river analysis package: user guide, version 1.1. CRC for Catchment Hydrology, Australia, P.4, Jan 2004. www.toolkit.net.au/rap Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., ... & Zhou, B. (2021). Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change, 2(1), 2391 Mehri, Sonia, Haji, Khadija, Alizadeh, Varia, and Mostafazadeh, R. (2016). Evaluation of spatial changes in the severity of meteorological drought periods in different time scales in Kurdistan province. Geographic Information, 26(102), 151-162. (In Persian) Mostafazadeh, R., Zabihi Silabi, M., & Kazemi, M. (2024). Temporal analysis of river flow health index of the Shahrchai river under the dam regulating effect. Hydrogeomorphology, 11(39), 101-121. (In Persian) Mostafazadeh, R, Haji, kh., Esmaliouri, A. (2018). Determining the intensity and continuity of hydrological drought periods using the Power Laws Analysis method in the rivers of Gorganrood watershed. Geographical Space, 18(62), 237-253. (In Persian) Nasaji Zavareh, M., Kirzmecheshmeh, B., Mohammadpour, M. (2021). Investigating spatial and temporal changes of seasonal and annual irrigation in Karkheh basin. Journal of Range and Watershed Management, 74(1), 207-221. (In Persian) Qaisrani, Z. N., Nuthammachot, N., Techato, K., & Ullah, A. (2021). Drought monitoring based on standardized precipita-tion index and standardized precipitation evapotranspirationindex in the arid zone of Balochistan province, Pakistan. Arabian Journal of Geosciences, 14(11), 1–13 Setayeshi Nasaz, H., Asghari Saraskanrood, S., Mostafazadeh, R., & Madadi, A. (2023). Investigating changes in the hydrological flow regime and the environmental flow component of EFCs in Khiauchai River in a 30-year period. Hydrogeomorphology, 10(37), 43-25. doi: 10.22034/hyd.2023.54796.1672. (In Persian) Sheikh, V., Naderi, M., Bahrehmand, A., Sadoddin, A., Abedi Tourani, M., Komaki, C. B., & Ghaemi, A. (2023). Quantifying the contributions of climate change and direct human interventions to streamflow alteration in the Hablehrood watershed using empirical approaches. Water and Soil Management and Modelling, 3(1), 298-315. doi: 10.22098/mmws.2022.11852.1178. (In Persian) Talbot, C., et al. 2018. The impact of flooding on aquatic ecosystem services. Biogeochemistry. 141: 439–461. Ullah, R., Khan, J., Ullah, I., Khan, F., & Lee, Y. (2023). Investigating Drought and Flood Evolution Based on Remote Sensing Data Products over the Punjab Region in Pakistan. Remote Sensing, 15(6), 1680. Wei, W., Zhang, H., Zhou, J., Zhou, L., Xie, B., & Li, C. (2021). Drought monitoring in arid and semi-arid region based onmulti-satellite datasets in northwest, China. Environmental Science and Pollution Research, 28, 51556–51574 Yildiz, O., (2014), Spatiotemporal analysis of historical droughts in the Central Anatolia, Turkey, Gazi University Journal of Science, 27 (4): 1177-1184. Zolina, O., Simmer, C., Belyaev, K., Gulev, S. K., Koltermann, P., (2013), Changes in the duration of European wet and dry spells during the last 60 years, Journal of Climate, 26: 2022-2047.
| ||
آمار تعداد مشاهده مقاله: 191 تعداد دریافت فایل اصل مقاله: 44 |