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Abstract

This research examines the phenomenon of optical solitons in the framework of the dispersive concatenation model,

which incorporates three established models: the Lakshmanan-Porsezian-Daniel equation (LPDE), the Hirota
equation (HE) and the nonlinear Schrödinger equation (NLSE). This model describe the soliton transmission

dynamics across trans-continental and trans-oceanic dynamics. The model provided is situated within the context

of nonlinear optics, a branch of optics that deals with optical phenomena in materials where the response of the
medium to light is nonlinear. The equation appears to be a generalized model that combines several well-known

equations from nonlinear optics. These equations often emerge as simplified descriptions of specific nonlinear

effects in various optical systems. They capture phenomena like self-focusing, self-phase modulation, and soliton
propagation, among others. The improved modified extended tanh scheme (IMETS) is utilized to derive solitons

and other solutions for the investigated model. Many types of solutions are extracted with the help of the IMETS.

These solutions including dark, bright, and singular solitons, Weierstrass elliptic and singular periodic solutions.
The nature of the extracted solutions is illustrated by introducing both 2D and 3D graphical representations and

setting the parameters with appropriate values.
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1. Introduction

A variety of physical systems such as fluid dynamics, optics and plasma physics are modeled with the aid of
NLSE which characterizes the progression of a function with complex values that represent the wave envelope. The
nonlinearity in the equation stems from the fact that the wave speed depends on the wave amplitude. The nonlinear
Schrödinger equation is of utmost importance in examining optical solitons. As these solitons move through a nonlinear
medium, they can maintain their velocities and shapes. NLSEs can be utilized for the purpose of designing and
enhancing optical fiber systems for a wide range of applications, including telecommunications and optical computing.

Several recent studies have focused on soliton solutions including the Gerdjikov-Ivanov equation [1, 2], the Radhakrishnan-
Kundu-Lakshmanan equation [3, 4], the Kundu-Eckhaus equation [5], HE [6], LPDE [7], and others. The dispersive
concatenation model is a composite of three separate mathematical models: the NLSE with fifth order dispersion, the
LPDE, and the HE model. Each of these models elucidates distinct physical phenomena associated with nonlinear
waves, including optical solitons, rogue waves, and other nonlinear waves. By examining the concatenation model,
scientists can gain a more comprehensive understanding of the characteristics of nonlinear waves and developing new
solutions to the associated physical dilemmas. Researching the concatenation model is a potential area of study that
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can provide new insights into the mechanics of nonlinear waves [8–13]. The dispersive concatenation model reads as
[14]:

iϕt + aϕxx + b|ϕ|2ϕ− iδ1(σ1ϕxxx + σ2|ϕ|2ϕx) + δ2[σ3ϕxxxx + σ4|ϕ|2ϕxx
+ σ5|ϕ|4ϕ+ σ6|ϕx|2ϕ+ σ7(ϕx)2ϕ∗ + σ8ϕ

∗
xxϕ

2]− iδ3[σ9ϕxxxxx + σ10|ϕ|2ϕxxx (1.1)

+ σ11|ϕ|4ϕx + σ12ϕϕxϕ
∗
xx + σ13ϕ

∗ϕxϕxx + σ14ϕϕ
∗
xϕxx + σ15ϕ

∗
x(ϕx)2] = 0.

Here ϕ(x, t) describes the wave profile. The temporal evolution is denoted by the first term. Chromatic dispersion
and Self-Phase modulation are denoted by a and b respectively. All parameters σj for j = 1, 2, 3, ..., 15 are constants.
Eq. (1.1) converts to the classical NLSE when δ1 = δ2 = δ3 = 0 while HE model is generated in case of δ1 6= 0 and
δ2 = δ3 = 0. For δ1 = δ3 = 0 with δ2 6= 0, Eq. (1.1) reduces to LPDE.

The proposed model was studied by employing the enhanced Kudryashov’s approach to get straddled, bright, and
singular optical solitons. This algorithm not only provides a nuanced understanding of the various soliton types but
also highlights the occurrence of singular solitons that exhibit unique characteristics. In addition, the Riccati equation
expansion approach was applied to obtain dark solitons in addition to singular solitons. Furthermore, the Weierstrass’
expansion scheme was implemented to encompass bright, singular solitons [14]. In this work, the improved modified
extended tanh function method is implemented to study Eq. (1.1). This method is based on the extended Riccati
equation which can produce various and novel types of solutions for the investigated model. This solutions including
bright, dark and singular solitons. In addition, singular periodic, rational, exponential and Weierstrass elliptic solutions
can be raised.

2. Integration scheme of IMETS

This part briefly discusses the IMETF approach [15, 16]. Considering the next NLPDE

F (ϕ,ϕt, ϕx, ϕxx, ϕtx, ....) = 0. (2.1)

The subsequent steps should be performed to handle Eq. (2.1) using the IMETF scheme:
Step(1): Utilizing the subsequent transformation:

ϕ(x, t) = ϕ(ξ), (2.2)

where ξ = x− c t,. After that, Eq. (2.1) can be expressed as:

G(ϕ,ϕ′, ϕ′′, ϕ′′′, ....) = 0. (2.3)

Step(2): The resulted NLODE’s solutions can be represented as:

ϕ(ξ) =
k∑
j=0

ajΥ
j(ξ) +

−k∑
j=−1

b−jΥ
j(ξ), (2.4)

where Υ(ξ) satisfy the following differential equation:

Υ′(ξ) =
√
d0 + d1Υ(ξ) + d2Υ2(ξ) + d3Υ3(ξ) + d4Υ4(ξ). (2.5)

Step(3): k can be evaluated by applying the balance rule on Eq. (2.3).
Step(4): The NLODE is transformed into nonlinear algebraic equation (NLAE) by inserting Eqs. (2.4) and (2.5) into
Eq. (2.3).
Step(5): A system of NLAE is then generated by collecting and equating the coefficients of Υj(ξ) with zero. The
resultant system can be handled to evaluate aj , bj , and c using Mathematica packages.
Step(6): One can get many solutions for Eq. (2.1) by substituting the determined constants and the general solutions
of (2.5) into Eq. (2.4).

Comparing with other techniques such as extended direct algebraic method [17], simple ansatze method [18], the
Unified method [19], the modified and extended rational expansion method [20], the extended (G′/G2)-expansion
technique [21], the variational principle method [22, 23], this method give various types of solutions such as bright,
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dark, singular solitons. In addition, other mathematical solutions such as exponential, Weierstrass elliptic, rational
type and singular periodic solutions can be extracted. However, when N, which is evaluated via the balance rule, is
large, it will give a more complex system that is difficult to solve.

3. Mathematical Analysis

The purpose of this section is to obtain exact solutions to Eq. (1.1) in the format indicated below:

ϕ(x, t) = <(ξ)eiψ(x,t),

ξ = x− ct, (3.1)

ψ(x, t) = −κx+ ωt+ θ0.

Here κ denote the soliton frequency while θ0 denote the phase constant. Wave number is denoted by ω while c denote
the soliton speed. By inserting Eq. (3.1) into Eq. (1.1) and then dividing into real (Re) and imaginary (IM) portions,
we obtain:
Re parts:

(δ2σ3 − 5δ3κσ9)<(4)(ξ) + (10δ3κ
3σ9 − 6δ2κ

2σ3 − 3δ1κσ1 + a)<
′′
(ξ)

+(δ1κ
3σ1 + δ2κ

4σ3 − δ3κ5σ9 − aκ2 − ω)<(ξ)

+(2δ3κσ12 − 2δ3κσ13 − 2δ3κσ14 − δ3κσ15 + δ2σ6 + δ2σ7)<(ξ)<
′2(ξ)

+(−3δ3κσ10 − δ3κσ12 − δ3κσ13 + δ3κσ14 + δ2σ4 + δ2σ8)<2(ξ)<
′′
(ξ) + (δ2σ5 − δ3κσ11)<5(ξ)

+(δ3κ
3σ10 + δ3κ

3σ12 + δ3κ
3σ13 − δ3κ3σ14 − δ3κ3σ15 − δ1κσ2 − δ2κ2σ4 + δ2κ

2σ6 − δ2κ2σ7

−δ2κ2σ8 + b)<3(ξ) = 0, (3.2)

and the IM parts:

−δ3σ9<(5)(ξ) + (10δ3κ
2σ9 − 4δ2κσ3 − δ1σ1)<

′′′
(ξ) + (−5δ3κ

4σ9 + 4δ2κ
3σ3 + 3δ1κ

2σ1 − 2aκ− c)<
′
(ξ)

−δ3σ15<
′3(ξ)− (δ3σ12 + δ3σ13 + δ3σ14)<(ξ)<

′
(ξ)<

′′
(ξ)− δ3σ10<2(ξ)<

′′′
(ξ)

+(3δ3κ
2σ10 − δ3κ2σ12 + 3δ3κ

2σ13 − δ3κ2σ14 − δ3κ2σ15 − 2δ2κσ4 − 2δ2κσ7

+2δ2κσ8 − δ1σ2)<2(ξ)<
′
(ξ)− δ3σ11<4(ξ)<

′
(ξ) = 0. (3.3)

Differentiate Eq. (3.2) with regard to ξ, we get

(δ2σ3 − 5δ3κσ9)<(5)(ξ) + (10δ3κ
3σ9 − 6δ2κ

2σ3 − 3δ1κσ1 + a)<
′′′

(ξ)

(δ1κ
3σ1 + δ2κ

4σ3 − δ3κ5σ9 − aκ2 − ω)<
′
(ξ)

(2δ3κσ12 − 2δ3κσ13 − 2δ3κσ14 − δ3κσ15 + δ2σ6 + δ2σ7)<
′3(ξ) + (2δ3κσ12 − 6δ3κσ13

−2δ3κσ14 − 2δ3κσ15 + 2δ2σ6 + 2δ2σ7 − 6δ3κσ10 + 2δ2σ4 + 2δ2σ8)<(ξ)<
′
(ξ)<

′′
(ξ)

+(−3δ3κσ10 − δ3κσ12 − δ3κσ13 + δ3κσ14 + δ2σ4 + δ2σ8)<2(ξ)<
′′′

(ξ) + 5(δ2σ5 − δ3κσ11)<4(ξ)<
′
(ξ)

+3(δ3κ
3σ10 + δ3κ

3σ12 + δ3κ
3σ13 − δ3κ3σ14 − δ3κ3σ15 − δ1κσ2 − δ2κ2σ4

+δ2κ
2σ6 − δ2κ2σ7 − δ2κ2σ8 + b)<2(ξ)<

′
(ξ) = 0. (3.4)
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Eqs. (3.3) and (3.4) will be similar under the following circumstances:

δ2σ3 + δ3σ9(1− 5κ) = 0,

10δ3κ
2σ9(κ− 1) + a+ 2σ3δ2κ(2− 3κ) + δ1σ1(1− 3κ) = 0,

δ1κ
2σ1(κ− 3) + δ2σ3κ

3(κ− 4)− δ3σ9κ
4(κ− 5) + aκ2 − ω + 2aκ+ c = 0,

2δ3κσ12 − 2δ3κσ13 − 2δ3κσ14 + δ3σ15(1− κ) + δ2σ6 + δ2σ7 = 0,

δ3σ12(2κ+ 1) + δ3σ13(1− 6κ) + δ3σ14(1− 2κ)− 2δ3κσ15 + 2δ2σ6 + 2δ2σ7 − 6δ3κσ10 + 2δ2σ4 + 2δ2σ8 = 0,

δ3σ10(1− 3κ)− δ3κσ12 − δ3κσ13 + δ3κσ14 + δ2σ4 + δ2σ8 = 0,

5δ2σ5 + δ3σ11(1− 5κ) = 0,

3δ3κ
2σ10(κ− 1) + δ3κ

2σ12(1− 3κ) + 3δ3σ13κ
2(κ− 1) + δ3κ

2σ14(1− 3κ)δ3κ
2σ15(1− 3κ)

+δ1σ2(1− 3κ) + δ2κσ4(2− 3κ) + 3δ2κ
2σ6 + δ2κσ7(2− 3κ)− δ2κσ8(3κ+ 2) + 3b = 0.

The following form can now be used to rewrite Eq.(3.3):

<(5)(ξ) + ∆1<
′′′

(ξ) + ∆2<
′
(ξ) + ∆3<

′3(ξ)

+∆4<(ξ)<
′
(ξ)<

′′
(ξ) + ∆5<2(ξ)<

′′′
(ξ) + ∆6<2(ξ)<

′
(ξ) + ∆7<4(ξ)<

′
(ξ) = 0, (3.5)

where

∆1 =
−1

δ3σ9
(10δ3κ

2σ9 − 4δ2κσ3 − δ1σ1),

∆2 =
−1

δ3σ9
(−5δ3κ

4σ9 + 4δ2κ
3σ3 + 3δ1κ

2σ1 − 2aκ− c),

∆3 =
σ15

σ9
,

∆4 =
1

σ9
(σ12 + σ13 + σ14),

∆5 =
σ10

σ9
,

∆6 =
−1

δ3σ9
(3δ3κ

2σ10 − δ3κ2σ12 + 3δ3κ
2σ13 − δ3κ2σ14 − δ3κ2σ15 − 2δ2κσ4 − 2δ2κσ7 + 2δ2κσ8 − δ1σ2),

∆7 =
σ11

σ9
.

Applying balance rule, we have k = 1. Subsequently, the solutions of Eq. (3.5) can be represented as:

<1(ξ) = a0 + a1Υ +
b1
Υ
. (3.6)

Using the procedures (2.3), (2.4) and (2.5) mentioned in the last part, the next results are derived:
Set 1. g0 = g1 = g3 = 0

Result (I)

a0 = 0, b1 = 0,∆2 = −
2g4

(
a2

1∆6 + 6∆1g4

) (
a4

1∆1∆7 + a2
1 (2∆6 −∆1 (∆3 − 4∆5)) g4 + 12∆1g

2
4

)
a4

1 ((∆3 − 4∆5) g4 − a2
1∆7) 2

,

g2 =
2g4

(
a2

1∆6 + 6∆1g4

)
a2

1 (a2
1∆7 −∆3g4 + 4∆5g4)

, g4 = − 2a2
1∆7√

(∆3 + 2∆4 + 6∆5) 2 − 480∆7 + ∆3 + 2∆4 + 6∆5

.
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Then, we derive

ϕ(x, t) =

{√√√√√24∆1∆7 − 2∆6

(√
(∆3 + 2∆4 + 6∆5) 2 − 480∆7 + ∆3 + 2∆4 + 6∆5

)
(√

(∆3 + 2∆4 + 6∆5) 2 − 480∆7 + 3∆3 + 2∆4 − 2∆5

)
∆7

× sech


2(ct− x)

√
12∆1∆7√

(∆3+2∆4+6∆5)2−480∆7+∆3+2∆4+6∆5

−∆6√√
(∆3 + 2∆4 + 6∆5) 2 − 480∆7 + 3∆3 + 2∆4 − 2∆5


}
× eiψ(x,t), (3.7)

ϕ(x, t) =

{√√√√√24∆1∆7 − 2∆6

(√
(∆3 + 2∆4 + 6∆5) 2 − 480∆7 + ∆3 + 2∆4 + 6∆5

)
(√

(∆3 + 2∆4 + 6∆5) 2 − 480∆7 + 3∆3 + 2∆4 − 2∆5

)
∆7

× sec


2(ct− x)

√
∆6 − 12∆1∆7√

(∆3+2∆4+6∆5)2−480∆7+∆3+2∆4+6∆5√√
(∆3 + 2∆4 + 6∆5) 2 − 480∆7 + 3∆3 + 2∆4 − 2∆5


}
× eiψ(x,t). (3.8)

A bright solitary is denoted by Eq. (3.7) whereas Eq. (3.8) denote a singular periodic solution.

Set 2. g1 = g3 = 0, g0 =
g2
2

4g4

Result (I)

a0 = 0, b1 = 0, g4 = − a2
1∆3g

2
2

4 (∆2 + ∆1g2 + 4g2
2)
,

∆6 =
a2

1∆3g
2
2 − 2a2

1∆4g
2
2 − 2a2

1∆5g
2
2 + 12∆2g4 − 72g4g

2
2

2a2
1g2

,

∆7 = −
g4

(
a2

1∆3 + 2a2
1∆4 + 6a2

1∆5 + 120g4

)
a4

1

.

Then, we derive

ϕ(x, t) =
√

2

√
∆2 + ∆1g2 + 4g2

2

∆3g2
× tanh

(√
−g2(x− ct)√

2

)
× eiψ(x,t), (3.9)

ϕ(x, t) =
√

2

√
−∆2 + ∆1g2 + 4g2

2

∆3g2
× tan

(√
g2(x− ct)
√

2

)
× eiψ(x,t). (3.10)

A dark solitary is denoted by Eq. (3.9) whereas Eq. (3.10) denotes a singular periodic solution.

Result (II)

a0 = 0, g4 = −a1g2

2b1
, b1 =

∆2 + 4g2 (∆1 + 16g2)

8a1∆3g2
,

a1 =
(∆3 + 2∆4 + 6∆5) g2 −

√
((∆3 + 2∆4 + 6∆5) 2 − 480∆7) g2

2

4∆7
,

∆6 =
8g2 (a1b1 (∆3 − 2 (∆4 + ∆5)) + 36g2)− 3∆2

4a1b1
.
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Then, we derive

ϕ(x, t) =
−1√

2
√

∆3g2

{√
∆2 + 4g2 (∆1 + 16g2)× coth

(√
2
√
−g2(x− ct)

)}
× eiψ(x,t), (3.11)

ϕ(x, t) =
1√

∆3g2

{√
−∆2

2
− 2∆1g2 − 32g2

2 × cot
(√

2
√
g2(x− ct)

)}
× eiψ(x,t). (3.12)

Eq. (3.11) is a singular solitary solution whereas Eq. (3.12) represents a singular periodic solution.

Set (3). g2 = g4 = 0

Result (I)

b1 = 0, ∆7 = 0, ∆3 =
1

2
(−3) (∆4 + 2∆5) ,

∆1 =
a3

1∆4g1 + 3a3
1∆5g1 + 3a2

0a1∆4g3 + 9a2
0a1∆5g3 + 45a0g

2
3

3a1g3
,

∆2 =
3a4

1 (∆4 + 2∆5) g0 − a0a
3
1∆4g1 + 3a3

0a1 (∆4 + 4∆5) g3 − 9a2
1g1g3 + 45a2

0g
2
3

2a2
1

,

g3 = − 1

30
a1

(√
a2

0 (∆4 + 4∆5) 2 − 40∆6 + a0 (∆4 + 4∆5)

)
.

Then, we derive

ϕ(x, t) =

{
a0 + a1℘

 (x− ct)
√
−a1

(√
a2

0 (∆4 + 4∆5) 2 − 40∆6 + a0 (∆4 + 4∆5)
)

2
√

30
, {h2, h3}


}
× eiψ(x,t), (3.13)

where h2 = −4g1/g3 and h3 = −4g0/g3. Eq. (3.13) denotes Weierstrass elliptic solution

Set (4). g0 = g1 = g2 = 0

Result (I)

b1 = 0, a0 = −

√
−
√

∆2
6−4∆2∆7+∆6

∆7√
2

, g3 =
4a0g4

a1
, g4 =

a2
1∆7

3 (∆3 − 2∆5)
,

∆1 =
−2a2

1a
2
0∆7 − a2

1∆6 − 6a2
0∆5g4

6g4
, ∆4 = −

2
(
a4

1∆7 + 6a2
1∆5g4 + 90g2

4

)
3a2

1g4
.

Then, we derive

ϕ(x, t) =

{√−√∆2
6−4∆2∆7+∆6

∆7

(
−2(x− ct)2

(√
∆2

6 − 4∆2∆7 + ∆6

)
+ 9∆3 − 18∆5

)
√

2
(

2(x− ct)2
(√

∆2
6 − 4∆2∆7 + ∆6

)
+ 3∆3 − 6∆5

) }
× eiψ(x,t), (3.14)
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ϕ(x, t) =

{√
−
√

∆2
6 − 4∆2∆7 + ∆6

2∆7
×

−1− 2e

√
2
3 (x−ct)

√√
∆2

6−4∆2∆7+∆6

∆3−2∆5

}× eiψ(x,t). (3.15)

A rational solution is derived by Eq. (3.14) whereas Eq. (3.15) denotes an exponential solution.

Set (5). g0 = g1 = 0, g4 =
g2
3

4g2

Result (I)

b1 = 0, a0 =
a1g2

g3
, g2 = −

(√
(∆3 + 2∆4 + 6∆5) 2 − 480∆7 + ∆3 + 2∆4 + 6∆5

)
g2

3

8a2
1∆7

,

∆1 = −
g2

(
4a4

1∆7g
2
2 + a2

1∆4g2g
2
3 + 5a2

1∆5g2g
2
3 + 2a2

1∆6g
2
3 + 15g4

3

)
3g4

3

,

∆2 =
g2

2

(
a4

1∆7g
2
2 + a2

1∆4g2g
2
3 + 2a2

1∆5g2g
2
3 − a2

1∆6g
2
3 + 12g4

3

)
3g4

3

.

Then, we derive dark solitary solution

ϕ(x, t) =

{
1

4
√

2
×

√√√√
−

(√
(∆3 + 2∆4 + 6∆5) 2 − 480∆7 + ∆3 + 2∆4 + 6∆5

)
g2

3

∆7g4

×

tanh

 (x− ct)
√
−
(√

(∆3+2∆4+6∆5)2−480∆7+∆3+2∆4+6∆5

)
g2
3

a2
1∆7

4
√

2

+ 1


−

(√
(∆3 + 2∆4 + 6∆5) 2 − 480∆7 + ∆3 + 2∆4 + 6∆5

)
g3

8a1∆7

}
× eiψ(x,t). (3.16)

4. 3D and 2D visualizations

In order to highlight the properties of the derived solutions, we present the two–dimensional and three-dimensional
graphs of some solutions. Fig (1) shows a bright solitary solution of Eq. (3.7) with c = 0, ∆1 = 2, ∆2 = 0.18, ∆3 =
0.25, ∆4 = 1, ∆5 = 0.285, ∆6 = −2, ∆7 = 0.001. Singular periodic solutions of Eq. (3.8) is introduced in Figure 2
with c = −2.95, ∆1 = −0.565, ∆3 = −0.025, ∆4 = −0.615, ∆5 = 0.04, ∆6 = 0.46, ∆7 = −0.02. Figure 3 shows a
singular solitary solution of Eq. (3.11) with c = 0.02, ∆1 = −2, ∆2 = −2, ∆3 = −2, g2 = −2. Figure 4 shows a dark
solitary solution of Eq. (3.16) with c = −0.48, a1 = −0.22, g4 = 0.02, g3 = −0.26, ∆3 = −0.15, ∆4 = 0.86, ∆5 =
0.1, ∆7 = −0.28.

5. Discussion and Results

This paper successfully ventured and recovered optical soliton solutions to the dispersive concatenation model with
linear chromatic dispersion and self-phase modulation. Earlier investigations have laid the groundwork by introducing
concatenation models combining established equations such as the NLSE, LPDE model, and Sasa-Satsuma equation.
We have extended these models to incorporate higher-order dispersive effects, introducing equations like the SHE and
quintic-order NLSE. Studying was conducted with the aid of the improved modified extended tanh function method,
various and novel solutions were raised. These solutions including bright, dark and singular solitons. In addition,
other mathematical solutions such as Weierstrass elliptic, exponential, rational and singular periodic solutions were
constructed. 3D and 2D graphical representations were illustrated for some selected solutions to show the nature of the
propagated waves. These solutions were presented by setting the parameters with appropriate values. The obtained
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(a) (b)

Figure 1. Bright solitary solution of Eq. (3.7).

(a) (b)

Figure 2. Singular periodic solution of Eq. (3.8).

solitons proved that a dedicated balance occurred between the non linear and dispersion terms. These solutions will
help in the development of the communication industry as these types of solutions can propagate to very long distances
maintaining their shapes and speeds.

6. Conclusion

The IMETS was successfully applied in this work to investigate dispersive optical solitons. Many solitons and other
solutions were extracted. These solutions including bright, dark, and singular solitary solutions, Weierstrass elliptic and
singular periodic solutions. Moreover, graphical representations in both 2D and 3D of some of the recovered solutions
are presented to illustrate the characteristics of the propagating wave. These solutions provide an explanation for
a wide range of fascinating and challenging physical phenomena due to the NLSE model’s applicability in several
scientific domains, including wave-guides and optical fibers. The retrieved solutions in this research study are novel,
and the model was not previously investigated using the proposed methodology. The approach’s success, convenience
of use, and efficacy show the method’s applicability for dealing with nonlinear optical problems. With all of these
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(a) (b)

Figure 3. Singular solitary solution of Eq. (3.11).

(a) (b)

Figure 4. Dark solitary solution of Eq. (3.16).

features, it will undoubtedly enrich the literature. The results are thus tremendously promising and lead to the
avenues of further research in this arena. Later, the model will be studied with differential group delay followed by
the consideration of the model with dispersion-flattened fibers. In addition, the stochastic model can be investigated
to show the effect of the noise on the extracted solutions.

References

[1] I. Samir, N. Badra, A. R. Seadawy, H. M. Ahmed, A. H. Arnous, Computational extracting solutions for the
perturbed Gerdjikov-Ivanov equation by using improved modified extended analytical approach, Journal of Geometry
and Physics, 176 (2022), 104514.

[2] I. Onder, A. Secer, M. Ozisik, and M. Bayram, Investigation of optical soliton solutions for the perturbed Gerdjikov-
Ivanov equation with full-nonlinearity, Heliyon, 9 (2) (2023), e13519.

[3] S. Arshed, A. Biswas, P. Guggilla, and A. S. Alshomrani, Optical solitons for Radhakrishnan–Kundu–Lakshmanan
equation with full nonlinearity, Physics Letters A, 384(26) (2020), 126191.
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