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Abstract

Maximal surfaces, a fascinating class of surfaces in differential geometry, are identified by having a mean curvature
equal to zero. This distinctive feature gives rise to a nonlinear second-order partial differential equation. In this

current article, we delve into the symmetries that underlie the maximal surface equation. Next, we identify one-
dimensional optimal system of subalgebras that span these symmetries. It provides a powerful tool to analyze

and manipulate the equation, making it easier to study. Finally, since we aim to not only explore the underlying

symmetries of the maximal surface equation, we demonstrate how these symmetries can be harnessed to uncover
and classify a wide range of maximal surfaces by using reduction methods.
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1. Introduction

Lie symmetries play powerful role in the field of differential geometry, allowing us to solve a variety of geometric
problems effectively and elegantly. These symmetries are closely related to the idea of invariance and offer a mathe-
matical framework that help us comprehend and resolve complicated problems, such as determining geodesics, minimal
or maximal surfaces in various geometric spaces.

Numerous researchers have delved into the exploration of symmetries within the context of geodesic equations
and have widely reported classification results [1, 3]. This has led to the revelation that Noether symmetries form a
subalgebra within the realm of homothetic algebra. Given the profound link between symmetries and conservation
laws established by Noether symmetries, their significance in the field of science cannot be understated.

In essence, the symmetries extend their influence over all matters related to the action integral, even when these
matters aren’t directly connected to geodesic equations. This is because the symmetries inherently pertain to the
symmetries of the action integral itself. Inspired by this intriguing perspective, Aslam and Qadir [2] investigated
specific spaces, uncovering a compelling relationship between the Noether symmetries of minimal Lagrangians and
the isometries inherent in this spaces. Furthermore, these authors [6] identified the symmetries within the framework
of Lagrangians for minimal surfaces with fixed volumes in diverse spaces, encompassing Euclidean spaces, spaces
characterized by constant curvature, and Schwarzschild spacetimes.

Recently, the first author et al. in [4] determined the Noether symmetries of hypersurfaces minimizing area with
fixed volumes within select vacuum classes of pp-waves. Additionally, they uncovered the associated conservation laws.
These spacetimes have undergone thorough examination in the literature related to Einstein’s equations, particularly
those accommodating a covariantly constant null bisector field.
Another important problem concerning about Lie symmetries is identifying the maximal surface by solving the maximal
PDE equation. Maximal surfaces have taken the attention of researchers for years, both in the fields of physics
and mathematics, and present a complex and intricate differential problem. These surfaces provide a rich field for
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investigation because of their singular viewpoint on the interaction between geometry and physics, which is typified by
a mean curvature of zero. The application of Lie symmetries to reveal the properties of maximal surfaces demonstrates
the power of mathematical symmetry in solving intricate, problems in differential geometry.

Furthermore, Lie symmetries, a potent mathematical tool that uncovers hidden structures and invariance within
differential equations, prove instrumental in the study of maximal surfaces. By applying Lie symmetries to the
differential equations obtaining these surfaces, scholars can find a multitude of details regarding their characteristics,
symmetries, and classification. This method not only makes maximal surfaces easier to understand, but it also makes it
easier to use them to solve practical problems, such as modeling the behavior of soap bubbles or optimizing membrane
structures in engineering.

Here, as a new approach to Lie symmetry groups of maximal surfaces, we determine Lie symmetry groups of
maximal surfaces in L3 by a partial differential equation describing maximal immersions. We employ Lie symmetries
to diminish the order of the equation. Some solutions of this equation are then obtained.

2. Preliminaries

Let we denote by L3 the space R3 equipped metric g = dx2 + dy2 − dz2. A spacelike surface M in L3 is considered
maximal if the mean curvature H at every point on the surface is equal to zero. Suppose M be represented as the
graphical representation of the function z = z(x, y) over a specific area of D into R2. We can demonstrate that the
mean curvature of this surface can be defined by the equation

H =
zxx(1− z2y) + zyy(1− z2x) + 2zxzyzxy

2(u2x + z2y − 1)
3
2

.

When the mean curvature H equals zero, it implies that the following equation holds

zxx(1− z2y) + zyy(1− z2x) + 2zxzyzxy = 0. (2.1)

In this case, M is called maximal surface, and the Equation (2.1) is said to be maximal equation of M .
We extend z to the second order function z(2) : D → Z(2). Here, Z(2) = Z × Z1 × Z2

∼= R6 corresponds to the
Cartesian product space where its coordinates denoting the derivatives of z of orders ranging from 0 to 2, denoted as

z(2) = (z; zx, zy; zxx, zyy).

The total space, denoted as D × Z(2), encompasses the input variables, the output variable, and the second-order
derivatives of the output variable. This second-order space is known as the jet space of the domain D × Z.

Now, we contemplate the equation:

H(x, y, z(2)) = zxx(1− z2y) + zyy(1− z2x) + 2zxzyzxy.

This equation can be associated with the linear subvariety W = {(x, y, z(2)) ∈ D × Z(2)|H(x, y, z(2)) = 0}, within
D×Z, which is determined by the function H vanishing W . H with maximmal rank when happens that the Jacobian
matrix

JH(x, y, z(2)) = (Hx,Hy;Hz;Hzx ,Hzy ;Hzxx ,Hzxy ,Hzyy ),

satisfies the condition that the rank of JH is equal to 1 whenever

H(x, y, z(2)) = 0. (2.2)

So maximal equation yields

Hx = 0, Hy = 0, Hz = 0, Hzx = 2zyzxy − 2zxzyy,

Hzy = 2zxzxy − 2zyzxx, Hzxx = 1− z2y , Hzxy
= 2zxzy, Hzyy

= 1− z2x.

Therefore the following Jacobian satisfies the Equation (2.2)

JH(x, y, z(2)) = (0, 0, 0; 2zyzxy − 2zxzyy, 2zxzxy − 2zyzxx; 1− z2y , 2zxzy, 1− z2x).
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Alternatively, a symmetry group of a partial differential equation refers to a set of transformations denoted as G, which
operates on an open set of the surface M encompassing both input and output variables in the space. This group
exhibits the characteristic that if z = z(x, y) represents a solution of the H = 0, then zg = g.z(x, y) also represents a
solution of the H = 0 for every transformation g. The following Theorem represent an invariance algorithmic method
employed to determine G.

Theorem 2.1. Suppose H(x, y, z(2)) = 0 with maximal rank specify within an open set M ⊂ D × Z, if there exists
a local set of transformations, denoted as G, that acts on M , and if the condition Y [H(x, y, z(2))] = 0 is satisfied
whenever the equation H(x, y, z(2)) = 0 holds, for any infinitesimal vector fieldY belonging to the group G then it
follows that the group G is a symmetry group of H(x, y, z(2)) = 0.

Take into account the vector field Y = ξ1(x, y, z) ∂
∂x + ξ2(x, y, z)

∂

∂y
+ η(x, y, z)

∂

∂z
, on M ∈ D×Z , the vector field

Y (1) = ξ1(x, y, z) ∂
∂x + ξ2(x, y, z)

∂

∂y
+ η(x, y, z)

∂

∂z
is referred to as its first prolongation of Y , where

ηx = ηx + (ηz − ξ1x)zx − ξ2xzy − ξ1zz2x − ξ2zzxzy

and

ηy = ηy − ξ1yzx + (ηz − ξ2y )zy − ξ1zzxzy − ξ2zz2y .

The vector field Y (2) = Y (1) + ηxx
∂

∂zxx
+ ηxy

∂

∂zxy
+ ηyy

∂

∂zyy
is referred to as its second prolongation of Y , where

ηxx = ηxx + (2ηxz − ξ1xx
)zx − ξ2xx

zy + (ηzz − 2ξ1xz
)z2x

− 2ξ2xzzxzy − ξ1zzz3x − ξ2zzz2xzy + (ηz − 2ξ1x)zxx − 2ξ2xzxy

− 3ξ1zzxzxx − ξ2zzyzxx − 2ξ2zzxzxy,

ηxy = ηxy + (ηzy − ξ1xy
)zx + (ηzx − ξ2xy

)zy − ξ1zyz2x + (ηzz − ξ1zx
− ξ2zy )zxzy − ξ2zxz2y − ξ1yzxx + (ηz − ξ1x − ξ2y )zxy − ξ2xzyy
− ξ1zzyzxx − 2ξ2zzyzxy − 2ξ2zzxzxy − ξ2zzxzyy − ξ1zzz2xzy − ξ2zzzxz2y ,

ηyy = ηyy + (2ηzy − ξ2yy
)zy − ξ1yy

zx + (ηzz − 2ξ2zy )z2y

− 2ξ1zyzxzy − ξ2zzz3yξ1zzzxz2y + (ηz − 2ξ2y )zyy − 2ξ1yzxy

− 3ξ2zzyzyy − ξ1zzxzyy − 2ξ1zzyzxy.

For Equation (2.1) the condition of Theorem 2.1 becomes

ηx(2zyzxy − 2zxzyy) + ηy(2zxzxy − 2zyzxx) + ηxx(1− z2y) + ηyy(1− z2x) + ηxy(2zxzy) = 0. (2.3)

Substituting the functions ηx, ηy, ηxx, ηxy and ηyy defined by the first and second prolongation of Y (1), Y (2) and by
removing any interdependencies among the derivatives of z,s stemming from Equation (2.1), we discover:

ηxx + ηyy + (2ηxz − ξ1xx
− ξ1yy

)zx + (2ηzy − ξ2yy
− ξ

xx
)zy + (ηzz

−ηyy − 2ξ1xz )z2x + (ηzz − ηxx = 2ξ2yz )z2y − 2(ηxy − ξ2xz − ξ1yz )zxzy

−(ξ1zz − ξ1yy
)z3x − (ξ2yy

− ξ2xx
)z3y − (2ξ2xy

− ξ1xx
+ ξ1zz )zxz

2
y + (2ξ1xy

−ξ2yy
+ ξ2zz )z2xzy + 2(ξ2y − ηz)zxx + 2(ξ1x − ηz)zyy − 2(ξ1y − ξ2x)zxy

+2(ηy − ξ2z )zyzxx + 2(ξ1z − ηx)zxzyy − 2(ηy − ξ2z )zxzxy − 2(ξ1z + ηx)zyzxy = 0.

We can now set the coefficients of the leftover independent partial derivatives of z to vanish. This action leads to the
generation of a set of numerous PDEs for the coefficients ξ1, ξ2, and η within the infinitesimal operator. These PDEs
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are often referred to as the defining equations for G associated the equation H = 0:

ηxx + ηyy = 0, ξ1xx
+ ξ1yy

= 2ηxz.

ξ2xx
+ ξ2yy

= 2ηyz, ηzz − ηyy = 2ξ1yz
,

ηzz − φxx = 2ξ2yz
, ηxy − ξ2xz

− ξ1yz
= 0,

ξ1yy − ξ1zz = 0, ξ2xx − ξ2yy = 0,

ξ1xx
− ξ1zz = 2ξ2xy

, ξ2yy
− ξ2zz = 2ξ1xy

,

ξ2y = ηz, ηu = ξ1x

ξ1y = −ξ2x , ηy = ξ2z ,

ηx = ξ1z .

By integration, we find the following solutions

ξ1(x, y, z) = a7x− a4y + a6z + a1,

ξ2(x, y, z) = a4x+ a7y + a5z + a2,

η(x, y, z) = a6x+ a5y + a7z + a3

with a1, · · · , a7 ∈ R, and the operator Y is expressed by:

Y = a1
∂

∂x
+a2

∂

∂y
+a3

∂

∂z
+a4(−y ∂

∂x
+x

∂

∂y
)+a5(z

∂

∂y
+y

∂

∂z
)+c6(x

∂

∂x
+z

∂

∂x
)+c7(x

∂

∂x
+y

∂

∂y
+z

∂

∂z
). (2.4)

Proposition 2.2. A partial differential equation, defined over a domain M that lies within M ⊂ D × Z, has a
collection of infinitesimal symmetries forming a Lie algebra of operators in the space M denoted by g. Also, if g is
finite algebra, the symmetry equation constitutes a local Lie group of transformations that act on the domain M .

The results are derived from g is as follows :

Theorem 2.3. The Lie algebra g for the maximal equation consist of a set of seven vector fields that span it

Y1 =
∂

∂x
, Y2 =

∂

∂y
, Y3 =

∂

∂z
,

Y4 = −y ∂
∂x

+ x
∂

∂y
, Y5 = z

∂

∂y
+ y

∂

∂z
, Y6 = z

∂

∂x
+ x

∂

∂z
,

Y7 = x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z
.

As each one-parameter subgroup Gi generated by Yi represents a symmetry group, every solution z = z(x, y)
undergoes the transformation to the following solutions

z(1) = z(x− ε, y),

z(2) = z(x, y − ε),
z(3) = z(x, y) + ε,

z(4) = z(x cos ε− y sin ε, x sin ε+ y cos ε),

z(5) cosh ε− y sinh ε = z(x, y cosh ε− z(5) sinh ε),

z(6) cosh ε− x sinh ε = z(x cosh ε− z(6) sinh ε, y),

z(7) = eεz(e−εx, e−εy),

where ε is an arbitrary real number. For every s-parameter subgroup K within the complete symmetry group G of
the equation, there exists a set of group-invariant solutions. Therefore, a way to classify these solutions is to employ
an optimal system of group-invariant solutions, from which all other solutions can be extracte
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Table 1. Adjoint representation.

Ad Y1 Y2 Y3 Y4
Y1 Y1 Y2 Y3 Y4 − aY2
Y2 Y1 Y2 Y3 Y4 + aY1
Y3 Y1 Y2 Y3 Y4
Y4 Y1 cos a+ Y2 sin a Y2 cos a− Y1 sin a Y3 Y4
Y5 Y1 Y2 cosh a+ Y3 sinh a Y3 cosh a+ Y2 sinh a Y4 cosh a+ Y6 sinh a
Y6 Y1 cosh a+ Y3 sinh a Y2 Y3 cosh a+ Y1 sinh a Y4 cosh a− Y5 sinh a
Y7 eaY1 eaY2 eaY3 Y4

Table 2. Adjoint representation.

Ad Y5 Y6 Y7
Y1 Y5 Y6 + aY3 Y7 − aY1
Y2 Y5 − aY3 Y6 Y7 − aY2
Y3 Y5 − aY2 Y6 − aY1 Y7 − aY3
Y4 Y5 cos a− Y6 sin a Y6 cos a+ Y5 sin a Y7
Y5 Y5 Y6 cosh a+ Y4 sinh a Y7
Y6 Y5 cosh a− Y4 sinh a Y6 Y7
Y7 Y5 Y6 Y7

Proposition 2.4. If z = z(x, y) represents a solution that is invariant under the subgroup K of the equation, and
if g ∈ G is any other group element, then the transformed function zg = z̃(x, y) = g · z(x, y) becomes an invariant

solution under the subgroup K̃ = gKg−1, which is the conjugate subgroup of K under the action of g.

The challenge of categorizing group-invariant solutions can be simplified by focusing on the classification of sub-
groups within the full symmetry group G, considering them under conjugation. This process is essentially synonymous
with the task of classifying subalgebras of the Lie algebra g associated with the group G.

To achieve this, we undertake the computation of the adjoint representation AdG of the underlying Lie group G by
employing the Lie series methodology.

Ad(exp(aYi)Yj) =
∞∑
m=0

am

m!
(adYi)

m(Yj) = Yj − a[Yi, Yj ] +
a2

2
[Yi, [Yi, Yj ]]− · · ·

the entry in the (i, j)-th position represents the action of the adjoint representation Ad(exp(εYi))Yj on the elements
Yi and Yj .

In the context of one-dimensional subalgebras, the classification quandary is fundamentally analogous to the task
of categorizing the orbits within the adjoint representation. This is owing to the fact that each one-dimensional sub-
algebra is uniquely identified by a nontrivial vector in the Lie algebra g. The approach involves considering a general
element denoted as Y and subjecting it to diverse adjoint transformations with the objective of rendering it as ”simple”
as feasibly achievable. Thus we will construct a one-dimensional optimal system of Equation (2.1) by considering an

arbitrary element y =
7∑
i=1

siYi of Equation (2.1) lie algebra g. The map Gaii : g→ g given by y → Ad(exp(aiyi))y is a

linear, i = 1, · · · , 7. By using the above Table the matrix Mai
i of Gaii with respect to basis {Y1, · · · , Y7} is given by
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Ma1
1 =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 −a1 0 1 0 0 0
0 0 0 0 1 0 0
0 0 a1 0 0 1 0
−a1 0 0 0 0 0 1

, Ma2
1 =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
a2 0 0 1 0 0 0
0 0 −a2 0 1 0 0
0 0 0 0 0 1 0
0 −a2 0 0 0 0 1

,

Ma3
1 =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 −a3 0 0 1 0 0
−a3 0 0 0 0 1 0
0 0 −a3 0 0 0 1

, Ma4
1 =


cos a4 sin a4 0 0 0 0 0
− sin a4 cos a4 0 0 0 0 0

0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 cos a4 −sina4 0
0 0 0 0 0 cos a4 sin a4
0 0 0 0 0 0 1

,

Ma5
1 =


1 0 0 0 0 0 0
0 cosh a5 sinh a5 0 0 0 0
0 sinh a5 cosh a5 0 0 0 0
0 0 0 cosh a5 sinh a5 0 0
0 0 0 0 1 0 0
0 0 0 sinh a5 0 cosh a5 0
0 0 0 0 0 0 1

,

Ma6
1 =


cosh a6 0 sinh a6 0 0 0 0

0 1 0 0 0 0 0
sinh a6 0 cosh a6 0 0 0 0

0 0 0 cosh a6 − sinh a6 0 0
0 0 0 − sinh a6 cosh a6 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

,Ma7
1 =


ea7 0 0 0 0 0 0
0 ea7 0 0 0 0 0
0 0 ea7 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

.
It can be observed that

Ga77 ◦G
a6
6 ◦ · · · ◦G

a1
1 : y 7→ (−a1s7 + a2s4 − a3s6 + [cos a4 + cosh a6 + ea

7

+ 1]s1 − sin a4s2 + sin a6s3)Y1

+ (sin a4s1 + [cos a4 + cos a5 + ea7 + 1]s2 + sinh a5s3 − a3s5)Y2

+ (a1s6 − a2s5 + [1 + cosha5 + cosh a6 + ea7 ]s3 − a3s7 + sinh a5s2)Y3

+ ([1 + cosh a5 + cosh a6]s4 − sinh a6 + sinh a5s6)Y4 + ([sinh a5 − sinh a6]s4 + [cosh a6 + cos a4 + 1]s5)Y5

+ ([cosh a5 + 1 + cos a4]s6 − sin a4s5)Y6 + (s7 + sin a4s6)Y7.

By appropriately choosing values for ai , we can readily eliminate the coefficient of Yj in various scenarios. This allows
for the reduction of y, and a one-dimensional optimal system is consequently established

Y1, Y2, Y3, (2.5)

Y4, Y5, Y6, (2.6)

Y3 + Y4, Y1 + Y5, Y2 + Y6, (2.7)

Y4 + Y7, Y5 + Y7, Y6 + Y7. (2.8)

For every one-parameter subgroup, there exists a corresponding set of group-invariant solutions, which are deter-
mined by a reduced ordinary differential equation (ODE) whose form depends on the specific subgroup.

In Equation (2.5), if we take Y7 = x ∂
∂x + y ∂

∂y + z ∂
∂z , the global solutions are A1 =

y

x
and A2 =

z

x
. Consequently,

we obtain z = xk( yx ).
Upon substitution into the Equation (2.1), we obtain

z = c1x+ c2y, c1, c2 ∈ R. (2.9)

Similarly, planes are identified for both Y1 and Y2.

In Equation (2.6), when we examine Y4 = −y ∂
∂x

+ x
∂

∂y
, the global invariants are given by A1 =

√
x2 + y2 and

A2 = z. Consequently, a solution invariant under the group takes the form z = k(
√
x2 + y2).
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Take

r =
√
x2 + y2, θ = arctg(

y

x
),

and through solutions within Equation (2.1), we obtain

k′′ =
1

r
(k′3 − k′).

• When k′ = 0, it implies z = n, so the maximal surface is a flat.

• In the case where k′ 6= 0, the Bernoulli equation h′ =
1

r
(h3 − h), h = k′ is obtained, with the solution h = k′

for h = c1√
r2+c21,

. The corresponding value of k is found to be c1 > 0. Therefore, the maximal surface is a

catenoid (see [5]).

For Y5, we detect also the catenoid rotating around the y-axis:

z =

√
y2 − c21 cosh2(

x

c1
+ c2), c1, c2 ∈ R∗. (2.10)

For Y6, we find the catenoid rotating around the x-axis. (2.7) Consider

Y = Y3 + Y4 = −y ∂
∂x

+ x
∂

∂y
+

∂

∂z
.

The global invariants of this group are A1 =
√
x2 + y2, A2 = z − arctg y

x
. Thus z = θ + k(r). By substituting in the

Equation (2.1) we get

k′′(1− 1

r2
) +

1

r
k′(1− k′2 − 2

r2
) = 0.

• If k′ = 0 as a result

z = arctg
y

x
+ c1, c1 ∈ R,

subsequently, the helicoid is discovered.

• Persume k′ 6= 0, and indicate k′ =
h

r
. We obtain the differential equation h′(r2− 1)− h

r
(h2 + 1) = 0, with the

general solution h =
√

r2−1
(c21−1)r2+1

, c1 > 1, and

k(r) = c2 ln(
√
r2 + 1±

√
r2 − c22) + arctg(± 1

c2

√
r2 − c22
r2 + 1

)− c2 ln
√
r2 + c22 + c,

where c2 =
1√
c21 − 1

, c ∈ R. In this instance, we derive Scherk’s second surface.

z = arctgθ + k(r),

which is helicoidal surface (2.8). Consider

Y = Y4 + Y7 = (x− y)
∂

∂x
+ (x+ y)

∂

∂y
+ z

∂

∂z
.

We determine the global invariants as A1 = θ−ln r and A2 =
z

r
. Consequently, we can express z as rk

√
θ − ln r.

By substituting this into Equation (2.1), the resulting differential equation is given by:

k′′(2 + k2) + k − 2k′ − k′3 + (k − k′)3 = 0.

In this specific scenario, finding a solution presents a more intricate challenge and calls for a thorough inves-
tigation in future studies. Moreover, we plan to delve into the classification of the s-subalgebra for s > 1. By
employing this theoretical framework, our objective is to deduce all solutions of Equation (2.1).
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3. Conclusion

In summary, this study has delved into the profound world of maximal surfaces and their underlying symmetries,
demonstrating the remarkable power of mathematical symmetry in solving intricate problems in the realm of differential
geometry. By applying Lie symmetries to the differential equations governing these surfaces, we have uncovered a
wealth of information about their characteristics, symmetries, and classification. The pursuit of Lie symmetry groups
for maximal surfaces in L3 through the partial differential equation describing maximal immersions has yielded valuable
reductions in equation order and, consequently, solutions to this fascinating problem. This work highlights the enduring
importance of symmetry in uncovering the hidden structures and invariance within differential equations, making it a
powerful tool for exploring the intricate interplay between geometry and physics in the world of maximal surfaces.
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