تعداد نشریات | 44 |
تعداد شمارهها | 1,323 |
تعداد مقالات | 16,270 |
تعداد مشاهده مقاله | 52,953,835 |
تعداد دریافت فایل اصل مقاله | 15,624,509 |
تجزیه ژنتیکی عملکرد و برخی صفات زراعی هیبرید ذرت تحت شرایط آبیاری کامل و تنش کم-آبی | ||
دانش کشاورزی وتولید پایدار | ||
دوره 34، شماره 3، آبان 1403، صفحه 235-249 اصل مقاله (1011.49 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/saps.2023.55247.2992 | ||
نویسندگان | ||
مژگان شیرین پور* 1؛ سعید اهری زاد2؛ احسان عطازاده3؛ اشکبوس امینی4؛ علی اصغری5؛ احمد بایبوردی6؛ حسن منیریفر7 | ||
1بخش تحقیقات زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان آذربایجان شرقی، سازمان تحقیقات، آموزش و ترویج کشاورزی، | ||
2گروه به نژادی و بیوتکنولوژی گیاهی، دانشکده کشاورزی، دانشگاه تبریز | ||
3گروه زیست شناسی گیاهی، سلولی و ملکولی، دانشکده علوم طبیعی، دانشگاه تبریز، تبریز، ایران | ||
4مؤسسه تحقیقات اصلاح و تهیه نهال و بذر، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران | ||
5گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران | ||
6بخش تحقیقات خاک و آب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان آذربایجان شرقی، سازمان تحقیقات، آموزش و ترویج کشاورزی، | ||
7بخش تحقیقات زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان آذربایجان شرقی، سازمان تحقیقات، آموزش و ترویج کشاورزی، | ||
چکیده | ||
صفات مختلف عملکرد دانه، فیزیولوژیکی و فنولوژیکی در هفت نسل ذرت با استفاده از روش تجزیه میانگین نسلها تحت شرایط کنترل شده و تنش متوسط و شدید کمآبی مورد مطالعه قرار گرفت. ارزیابی نسلهای حاصل از تلاقی دو لاین اینبرد ذرت شامل B73 و MO17، سینگل کراس 704 (به عنوان نسل F1) و نیز نسلهای F2، BC1 ، BC2 و F3 در قالب طرح بلوکهای کامل تصادفی با 20 تکرار طی دو سال زراعی 99-1398 در ایستگاه تحقیقاتی دانشکده کشاورزی دانشگاه تبریز انجام گرفت. نتایج تجزیه واریانس مرکب و مقایسات میانگین دادهها تحت سه رژیم آبیاری مختلف نشان داد که تنش کمآبی باعث کاهش معنیدار صفات عملکرد دانه و فیزیولوژیکی و افزایش معنیدار صفات فنولوژیکی گردید. تجزیه میانگین نسلها سهم بالای اثرات ژنی غیر افزایشی را در کنترل ژنتیکی صفات مورد مطالعه نشان داد. این امر لزوم گزینش در نسلهای در حال تفکیک پیشرفته و تولید ارقام هیبرید در ذرت را در جهت بهرهبرداری از واریانس غالبیت، نشان میدهد. همچنین، سهم بارز اثرات ژنی افزایشی در کنترل توارث تعداد روز تا کاکلدهی بیانگر این است که برای اصلاح این صفت و بهرهگیری از واریانس افزایشی، گزینش در نسلهای در حال تفرق اولیه و والدین اینبرد میتواند موثر باشد. بر اساس مجموعه صفات مورد بررسی لاین اینبرد MO17 و هیبرید SC704 در مقایسه با سایر لاینهای مورد مطالعه، تحمل بالایی به تنش کمآبی (از مرحله 5 الی 6 برگی تا مرحله کاکلدهی) نشان داده و از پایداری عملکرد دانه برخوردار بودند. | ||
کلیدواژهها | ||
تجزیه میانگین نسلها؛ تنش کمآبی؛ عمل ژن؛ نسلهای ذرت؛ وراثتپذیری | ||
مراجع | ||
Adebayo M, Menkir A, Hearne S and Kolawole A. 2017. Gene action controlling normalized difference vegetation index in crosses of elite maize (Zea mays L.) inbred lines. Cereal Research Communications, 45(4): 675-686. https://doi.org/10.1556/0806.45.2017.043 Alam A, Ahmed S, Begum M and Sultan M. 2008. Heterosis and combining ability for grain yield and its contributing characters in maize. Bangladesh Journal of Agricultural Research, 33(3): 375-379. https://doi.org/10.3329/bjar.v33i3.1596 Ali S, Khan NU, Gul R, Naz I, Goher R, Ali N, Khan SA, Hussain I and Saeed M. 2018. Genetic analysis for earliness and yield traits in maize. Pakistan Journal of Botany, 50(4): 1395-1405. Allen RG, Pereira LS, Raes D and Smith M. 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome. 300(9): D05109. Anjorin F, Adejumo S, Agboola L and Samuel Y. 2016. Proline, soluble sugar, leaf starch and relative water contents of four maize varieties in response to different watering regimes. Cercetari Agronomice in Moldova, 49(3): 51-62. https://repository.iuls.ro/xmlui/handle/20.500.12811/1182 Aslam M, Maqbool MA and Cengiz R. 2015. Drought stress in maize (Zea mays L.): Effects, resistance mechanisms, global achievements and biological strategies for improvement. Cham: Springer. https://doi.org/10.1007/978-3-319-25442-5 Atanaw A, Wali MC, Salimath P and Jagadeesha R. 2006. Combining ability, heterosis and per se performance in maize maturity components. Karnataka Journal of Agricultural Sciences, 19(2): 268-271. Bolaños J and Edmeades G. 1996. The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize. Field Crops Research, 48(1): 65-80. https://doi.org/10.1016/0378-4290(96)00036-6 Campos H, Cooper M, Habben J, Edmeades G and Schussler J. 2004. Improving drought tolerance in maize: a view from industry. Field Crops Research, 90(1): 19-34. https://doi.org/10.1016/j.fcr.2004.07.003 Chen J, Xu W, Burke JJ and Xin Z. 2010. Role of phosphatidic acid in high temperature tolerance in maize. Crop Science, 50(6): 2506-2515. https://doi.org/10.2135/cropsci2009.12.0716 Chiuta NE and Mutengwa CS. 2020. Combining ability of quality protein maize inbred lines for yield and morpho-agronomic traits under optimum as well as combined drought and heat-stressed conditions. Agronomy, 10(2): 184. https://doi.org/10.3390/agronomy10020184 Connor DJ, Loomis RS and Cassman KG. 2011. Crop ecology: productivity and management in agricultural systems. New York, USA: Cambridge University Press. Dai W, Girdthai T, Huang Z, Ketudat-Cairns M, Tang R and Wang S. 2016. Genetic analysis for anthocyanin and chlorophyll contents in rapeseed. Ciencia Rural, 46(5): 790-795. https://doi.org/10.1590/0103-8478cr20150564 Daryanto S, Wang L and Jacinthe PA. 2016. Global synthesis of drought effects on maize and wheat production. Plos One, 11(5): e0156362. https://doi.org/10.1371/journal.pone.0156362 Di Paolo E and Rinaldi M. 2008. Yield response of corn to irrigation and nitrogen fertilization in a Mediterranean environment. Field Crops Research, 105(3): 202-210. https://doi.org/10.1016/j.fcr.2007.10.004 Dutta T, Neelapu NR, Wani SH and Challa S. 2018. Compatible solute engineering of crop plants for improved tolerance toward abiotic stresses. In: biochemical, physiological and molecular avenues for combating abiotic stress tolerance in plants, 221-254 (Ed W. SH). United States: Academic Press. https://doi.org/10.1016/B978-0-12-813066-7.00012-7 El-Sherif L, El-Eshmawiy K, El-Ghareeb N and Mohamed K. 2012. An analytical economic study of the corn crop at the world level. Australian Journal of Basic and Applied Sciences, 6(3): 734-740. http://www.ajbasweb.com/ajbas/2012/March/734-740.pdf FAOSTAT. 2018. Food and Agricultural Organization Statistical Database. Rome, Italy: FAO. http://faostat.fao.org. FAOSTAT. 2021. Food and Agricultural Organization Statistical Database. Rome, Italy: FAO. http://faostat.fao.org. Farshadfar E. 1998. The application of quantitative genetics in plant breeding. Razi University Press. Kermanshah, Iran. (In persian). http://dx.doi.org/10.5539/jas.v4n9p1 Hallauer AR, Carena MJ and Miranda Filho Jd. 2010. Quantitative genetics in maize breeding. (3rd Edition). Springer-Verlag New York. 1-22p. https://doi.org/10.1007/978-1-4419-0766 -0 Hawkins TS, Gardiner ES and Comer GS. 2009. Modeling the relationship between extractable chlorophyll and SPAD-502 readings for endangered plant species research. Journal for Nature Conservation, 17(2): 123-127. https://doi.org/10.1016/j.jnc.2008.12.007 Hayman B and Mather K. 1955. The description of genic interactions in continuous variation. Biometrics, 11(1): 69-82. https://doi.org/10.2307/3001481 Hefny M. 2010. Genetic control of flowering traits, yield and its components in maize (Zea mays L.) at different sowing dates. Asian Journal of Crop Science, 2(4): 236-249. http://www.scialert.net/fulltext/?doi=ajcs.2010.236.249&org=11 Iqbal M, Khan K, Sher H and Al-Yemeni MN. 2011. Genotypic and phenotypic relationship between physiological and grain yield related traits in four maize (Zea mays L.) crosses of subtropical climate. Scientific Research and Essays, 6(13): 2864-2872. http://www.academicjournals.org/SRE/PDF/pdf2011/4Jul/Iqbal%20et%20al.pdf Irshad ul Haq M, Kamal N, Khanum S, Siddique M and Arshadullah M. 2014. Generation mean analysis for flowering characteristics in maize (Zea mays L.). Persian Gulf Crop Protection, 3(1): 18-24. Kahriman F, Egesel C, Cebeci R, Demir A and Bayraktar S. 2015. Genetic Analysis of Flowering in Maize based on Calendar and Thermal Time. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 25(2): 193-199. https://doi.org/10.29133/yyutbd.236302 Kumar TS, Reddy DM, Naik VS, Parveen SI and Subbaiah P. 2012. Gene action for yield and morpho-physiological traits in maize (Zea mays L.) inbred lines. Journal of Agricultural Science, 4(5): 13-16. http://dx.doi.org/10.5539/jas.v4n5p13 Lima VJd, Amaral Júnior ATd, Kamphorst SH, Bispo RB, Leite JT, Santos TdO, Schmitt KFM, Chaves MM, Oliveira UAd and Santos PHAD. 2019. Combined dominance and additive gene effects in trait inheritance of drought-stressed and full irrigated popcorn. Agronomy, 9(12): 782. https://doi.org/10.3390/agronomy9120782 Maazou ARS, Tu J, Qiu J and Liu Z. 2016. Breeding for drought tolerance in maize (Zea mays L.). American Journal of Plant Sciences, 7(14): 1858. http://dx.doi.org/10.4236/ajps.2016.714172 Mather K and Jinks JL. 1982. Biometrical genetics: the study of continuous variation. Springer. https://doi.org/10.1007/978.1.4899.3406.2 Moradi M. 2014. Genetic analysis to determine the nature and magnitude of genetic variances and heritability estimates in maize (Zea mays L.). International Journal of Agronomy and Agricultural Research, 5(5): 183-118. Moradi M, Choukan R, Heravan EM and Bihamta MR. 2014. Genetic analysis of various morpho-physiological traits in Zea mays L. using graphical approach under normal and water stress conditions. Research on Crops, 15(1): 62-70. https://doi.org/10.5958/j.2348-7542.15.1.008 Naroui Rad MR, Kadir MA, Yusop MR, Jaafar HZ and Danaee M. 2013. Gene action for physiological parameters and use of relative water content (RWC) for selection of tolerant and high yield genotypes in F2 population of wheat. Australian Journal of Crop Science, 7(3): 407-413. Nemeskéri E, Kovács-Nagy E and Sárdi É. 2017. Relationships between the biochemical and spectral traits of leaves and the productivity of apple trees in organic and integrated production systems. Biological Agriculture Horticulture, 33(2): 97-114. https://doi.org/10.1080/01448765.2016.1235992 Nielsen RB. 2016.Silk development and emergence in corn. Purdue University: Corny News Network. Nuccio ML, Wu J, Mowers R, Zhou HP, Meghji M, Primavesi LF, Paul MJ, Chen X, Gao Y and Haque E. 2015. Expression of trehalose-6-phosphate phosphatase in maize ears improves yield in well-watered and drought conditions. Nature Biotechnology, 33(8): 862-869. https://doi.org/10.1038/nbt.3277 Ofori A, Ofori K, Obeng-Antwi K, Tengan K and Badu-Apraku B. 2015. Combining ability and heterosis estimate of extra-early quality protein maize (QPM) single cross hybrids. Journal of Plant Breeding and Crop Science, 7(4): 87-93. https://doi.org/10.5897/JPBCS2015.0496 Pandit M, Chakraborty M, Yadav RK, Prasad K, Sah RP and Soti U. 2019. Association study in different generations of Maize (Zea mays L.). Cogent Food and Agriculture, 5(1): 1-15. https://doi.org/10.1080/23311932.2019.1592062 Pavan R, Gangappa E, Ramesh S, Rao AM and Shailaja H. 2017. Detection of epistasis through triple test cross (TTC) analysis in maize (Zea mays L.). Journal of Applied and Natural Science, 9(4): 2496-2501. https://doi.org/10.31018/jans.v9i4.1560 Pessarakli M. 2019. Handbook of plant and crop stress. CRC press. PourMohammad A, Toorchi M, Alavikia SS and Shakiba MR. 2014. Genetic analysis of yield and physiological traits in sunflower (Helianthus annuus L.) under irrigation and drought stress. Notulae Scientia Biologicae, 6(2): 207-213. https://doi.org/10.15835/nsb629173 Ribaut JM, Betran J, Monneveux P and Setter T. 2009. Drought tolerance in maize. In Handbook of maize: its biology, 311-344 (Eds J. Bennetzen and S. Hake). New York: Springer. https://doi.org/10.1007/978-0-387-79418-1_16 Saleem M, Shahzad K, Javid M and Ahmed A. 2002. Genetic analysis for various quantitative traits in maize (Zea mays L.) inbred lines. International Journal of Agriculture and Biology, 4(3): 379-382. Satyanarayana E. 1995. Genetic analysis of flowering period in rabi maize (Zea mays L.). Journal of Agricultural Research, 29(3): 213-218. Shahrokhi M, Khorasani S and Ebrahimi A. 2013. Study of genetic components in various maize (Zea mays L.) traits, using generation mean analysis method. International Journal of Agronomy and Plant Production, 4(3): 405-412 Sah R, Chakraborty M, Prasad K, Pandit M, Tudu V, Chakravarty M, Narayan S, Rana M and Moharana D. 2020. Impact of water deficit stress in maize: Phenology and yield components. Scientific Reports, 10(1): 1-15. https://doi.org/10.1038/s41598-020-59689-7 Sher H, Iqbal M and Khan K. 2012. Genetic analysis of maturity and flowering characteristics in maize (Zea mays L.). Asian Pacific Journal of Tropical Biomedicine, 2(8): 621-626. https://doi.org/10.1016/S2221-1691(12)60108-7 Sleper DA and Poehlman JM. 2006. Breeding field crops. Oxford, UK.: (5th Edition). Blackwell publishing. 432P. Snedecor G and Cochran W. 1989. Statistical Methods, eight edition. Iowa State University Press, Ames, Iowa. Sofi P, Rather A and Venkatesh S. 2006. Detection of epistasis by generation means analysis in maize hybrids. Pakistan Journal of Biological Sciences, 9(10): 1983-1986. https://doi.org/10.3923/pjbs.2006.1983.1986 Song H, Li Y, Zhou L, Xu Z and Zhou G. 2018. Maize leaf functional responses to drought episode and rewatering. Agricultural and Forest Meteorology, 249: 57-70. https://doi.org/10.1016/j.agrformet.2017.11.023 Tabassum M, Saleem M, Akbar M, Ashraf M and Mahmood N. 2007. Combining ability studies in maize under normal and water stress conditions. Journal of Agricultural Research, 45: 261-268. Tezara W, Mitchell V, Driscoll S and Lawlor D. 1999. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature, 401(6756): 914-917. https://doi.org/10.1038/44842 Tollenaar M, Ahmadzadeh A and Lee E. 2004. Physiological basis of heterosis for grain yield in maize. Crop Science, 44(6): 2086-2094. https://doi.org/10.2135/cropsci2004.2086 Van Gioi H, Mallikarjuna MG, Shikha M, Pooja B, Jha SK, Dash PK, Basappa AM, Gadag RN, Rao AR and Nepolean T. 2017. Variable level of dominance of candidate genes controlling drought functional traits in maize hybrids. Frontiers in Plant Science, 8: 940. https://doi.org/10.3389/fpls.2017.00940 Wang B, Liu C, Zhang D, He C, Zhang J and Li Z. 2019. Effects of maize organ-specific drought stress response on yields from transcriptome analysis. BMC Plant Biology, 19(1): 335. https://doi.org/10.1186/s12870-019-1941-5 Wannows A, Sabbouh M and Al-Ahmad S. 2015. Generation mean analysis technique for determining genetic parameters for some quantitative traits in two maize hybrids (Zea mays L.). Jordan Journal of Agricultural Sciences, 11: 59-72. Wolf D, Peternelli L and Hallauer A. 2000. Estimates of genetic variance in an F2 maize population. Journal of Heredity, 91(5): 384-391. https://doi.org/10.1093/jhered/91.5.384 Yuan Z, Cao Q, Zhang K, Ata-Ul-Karim ST, Tian Y, Zhu Y, Cao W and Liu X. 2016. Optimal Leaf Positions for SPAD Meter Measurement in Rice. Frontiers in Plant Science, 7: 719. https://doi.org/10.3389/fpls.2016.00719 Zhang X, Lei L, Lai J, Zhao H and Song W. 2018. Effects of drought stress and water recovery on physiological responses and gene expression in maize seedlings. BMC Plant Biology, 18(1): 68. https://doi.org/10.1186/s12870-018-1281-x | ||
آمار تعداد مشاهده مقاله: 86 تعداد دریافت فایل اصل مقاله: 104 |