- [1] O. Abdeljawad, Q. Thabet, M. Al-Mdallal, and F. Jarad, Fractional logistic models in the frame of fractional operators generated by conformable derivatives, Chaos Solitons Frac., 119 (2019), 94-101.
- [2] O. P. Agrawal, A general solution for the fourth-order fractional diffusion-wave equation, Fract. Calculus Appl. Anal., 3(1) (2000), 1-12.
- [3] O. P. Agrawal, A general solution for the fourth-order fractional diffusion-wave equation defined in bounded domain, Comput. Struct., 79 (2001), 1497-501.
- [4] N. H. Ali, S. A. Mohammed, and J. Manafian, Study on the simplified MCH equation and the combined KdVmKdV equations with solitary wave solutions, Partial Diff. Eq. Appl. Math., 9 (2024), 100599.
- [5] O. Al-Mdallal and M. Qasem, On fractional-Legendre spectral Galerkin method for fractional Sturm-Liouville problems, Chaos Solitons Frac., 116 (2018), 261-267.
- [6] O. Al-Mdallal, M. Qasem, and S.A.A. Omer, Fractional-order Legendre-collocation method for solving fractional initial value problems, Appl. Math. Comput., 321 (2018), 74-84.
- [7] O. Al-Mdallal, M. Qasem, K. Ali Abro, and I. Khan, Analytical solutions of fractional Walter’s B fluid with applications, Complexity, 2018 (2018), 8131329.
- [8] R. T. Alqahtani, Approximate Solution of NonLinear Fractional Klein-Gordon Equation Using Spectral Collocation Method, Appl. Math., 6 (2015), 2175-2181.
- [9] O. Aman Sidra, Qasem Al-Mdallal, and I. Khan, Heat transfer and second order slip effect on MHD flow of fractional Maxwell fluid in a porous medium, J. King Saud Univ. Sci., 32(1) (2020), 450-458.
- [10] M. Asgari, Numerical Solution for Solving a System of Fractional Integro-differential Equations, IAENG Int. J. Appl. Math., 45 (2015), 85-91.
- [11] J. H. Chen, Analysis of Stability and Convergence of Numerical Approximation for the Riesz Fractional Reactiondispersion Equation, J. Xiamen Univ., 46 (2007), 616-619.
- [12] S. Chen, Finite difference approximations for the fractional Fokker-Planck equation, Appl. Math. Model., 33 (2009), 256-273.
- [13] Y. M. Chen and Y. B. Wu, Wavelet method for a class of fractional convectiondiffusion equation with variable coefficients, J. Comput. Sci., 1 (2010), 146-149.
- [14] Y. M. Chen, Y. B. Wu, Y. Cui, Z. Wang, and D. Jin, Wavelet method for a class of fractional convection-diffusion equation with variable coefficients, J. Comput. Sci., 1 (2010), 146-149.
- [15] M. Dehghan, J. Manafian, and A. Saadatmandi, Solving nonlinear fractional partial differential equations using the homotopy analysis method, Num. Meth. Partial Diff. Eq J., 26 (2010), 448-479.
- [16] M. Dehghan, J. Manafian, and A. Saadatmandi, The solution of the linear fractional partial differential equations using the homotopy analysis method, Z. Naturforsch, 65(a) (2010), 935-949.
- [17] M. Dehghan, M. Abbaszadeh, and A. Mohebbi, An implicit RBF meshless approach for solving the time fractional nonlinear sine-Gordon and Klein-Gordon equations, Eng. Anal. Boundary Elem., 50 (2015), 412-434.
- [18] J. V. Devi, Non-smooth analysis and fractional differential equations, Nonlinear Anal., 25 (1997), 246-233.
- [19] R. Du, W. R. Cao, and Z. Z. Sun, A compact difference scheme for the fractional diffusion-wave equation, Appl. Math. Model, 34 (2010), 2998-3007.
- [20] S. Esmaeili, M. Shamsi, and Y. Luchko, Numerical solution of fractional differential equations with a collocation method based on Mu¨ntz polynomials, Comput. Math. Appl., 62 (2011), 918-929.
- [21] M. Ginoa, S. Cerbelli, and H. E. Roman, Fractional diffusion equation and relaxation in complex viscoelastic materials, Phys. A, 191 (1992), 449-453.
- [22] Y. Gu, S. Malmir, J. Manafian, O. A. Ilhan, A. A. Alizadeh, and A. J. Othman, Variety interaction between k-lump and k-kink solutions for the (3+1)-D Burger system by bilinear analysis, Results Phys., 43 (2022), 106032.
- [23] G. Hariharan, Wavelet method for a class of fractional Klein-Gordon equations, J Comput Nonlinear Dyn., 8 (2013), 021008-1.
- [24] M. S. Hashemi D. Baleanu, and M. Parto-Haghighi, A lie group approach to solve the fractional poisson equation, Rom. J. Phys., 60 (2015), 1289-1297.
- [25] J. H. He, Some applications of nonlinear fractional differential equations and their approximations, Bulletin Sci. Tech. Soc., 15(2) (1999), 86-90.
- [26] B. Karaagac, Y. Ucar, N. M. Yagmurlu, and A. Esen, A New Perspective on The Numerical Solution for Fractional Klein Gordon Equation, J. polytechnic, 22(2) (2019), 443-451.
- [27] M. M. Khader, N. H. Swetlam, and A. M. S. Mahdy, The Chebyshev Collection Method for Solving Fractional Order Klein-Gordon Equation, Wseas Trans. Math., 13 (2014), 31-38.
- [28] D. Kumara, A. R. Seadawy, and A. K. Joardare, Modified Kudryashov method via new exact solutions for some conformable fractional differential equations arising in mathematical biology, Chinese J. Phys., 56 (2018), 75-85.
- [29] M. Lakestani and J. Manafian, Analytical treatment of nonlinear conformable timefractional Boussinesq equations by three integration methods, Opt. Quant. Elec., 50(4) (2018), 1-31.
- [30] M. Lakestani and J. Manafian, Analytical treatments of the space-time fractional coupled nonlinear Schr¨odinger equations, Opt. Quant. Elec., 50(396) (2018), 1-33.
- [31] M. Lakestani, J. Manafian, A. R. Najafizadeh, and M. Partohaghighi, Some new soliton solutions for the nonlinear the fifth-order integrable equations, Comput. Meth. Diff. Equ., 10(2) (2022), 445-460.
- [32] R. Lin, F. Liu, V. Anh, and I. Turner, Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation, Appl. Math. Comput., 212 (2009), 435-445.
- [33] C. S. Liu, Solving an Inverse Sturm-Liouville Problem by a Lie-Group Method, Boundary Value Prob., 2008 (2008), 749865.
- [34] C. S. Liu, The Fictitious Time Integration Method to Solve the Space- and Time-Fractional Burgers Equations, Comput. Materials Continua, 15(3) (2010), 221-240.
- [35] A. Lotfo, M. Dehghan, and S.A. Yousefi, A numerical technique for solving fractional optimal control problem, Comput. Math. Appl., 62 (2011), 1055-1067.
- [36] P. Lyu, and S. Vong, A linearized second-order scheme for nonlinear time fractional Klein-Gordon type equations, Num. Algorithms, 78 (2018), 485-511.
- [37] F. Mainardi, Fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos Solitons Frac., 7(9) (1996), 1461-1477.
- [38] F. Mainardi, The fundamental solutions for the fractional diffusion-wave equation, Appl. Math. Lett., 9(6) (1996), 23-28.
- [39] J. Manafian and M. Lakestani, Application of tan(φ/2)-expansion method for solving the Biswas-Milovic equation for Kerr law nonlinearity, Optik, 127(4) (2016), 2040-2054.
- [40] J. Manafian, and M. Lakestani, Abundant soliton solutions for the Kundu-Eckhaus equation via tan(φ(ξ))expansion method, Optik, 127(14) (2016), 5543-5551.
- [41] J. Manafian, and M. Lakestani, Optical soliton solutions for the Gerdjikov-Ivanov model via tan(φ/2)-expansion method, Optik, 127(20) (2016), 9603-9620.
- [42] J. Manafian and M. Lakestani, A new analytical approach to solve some the fractional-order partial differential equations, Indian J. Phys., 91 (2017), 243-258.
- [43] J. Manafian, and M. Lakestani, N-lump and interaction solutions of localized waves to the (2+ 1)- dimensional variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada equation, J. Geom. Phys., 150 (2020), 103598.
- [44] J. Manafian, L. A. Dawood, and M. Lakestani, New solutions to a generalized fifth-order KdV like equation with prime number p = 3 via a generalized bilinear differential operator, Partial Diff. Equ. Appl. Math., 9 (2024), 100600.
- [45] A. Mohebbi, M. Abbaszadeh, and M. Dehghan, High-Order Difference Scheme for the Solution of Linear Time Fractional KleinGordon Equations, Num. Solution Partial Diff. Eq., 30 (2014), 1234-1253.
- [46] S. R. Moosavi, N. Taghizadeh, and J. Manafian, Analytical approximations of one-dimensional hyperbolic equation with non-local integral conditions by reduced differential transform method, Comput. Meth. Diff. Equ., 8(3) 2020, 537-552.
- [47] J. Q. Murillo and S. B. Yuste, An explicit difference method for solving fractional diffusion and diffusion-wave equations in the Caputo form, J. Comput. Nonlinear Dyn., 6(2) (2011), 021014.
- [48] A. M. Nagy, Numerical solution of time fractional nonlinear Klein-Gordon equation using Sinc Chebyshev collocation method, Appl. Math. Comput., 310 (2017), 139-148.
- [49] S. Sarwar, and S. Iqbal, Exact Solution of Non-linear Fractional Order Klein-Gordon Partial Differential Equations using Optimal Homotopy Asymptotic Method, Nonlinear Sci. Let. A, 8(4) (2017), 65-373.
- [50] S. Sarwar and S. Iqbal, Stability analysis, dynamical behavior and analytical solutions of nonlinear fractional differential system arising in chemical reaction, Chinese J. Phys., 56 (2018), 374-384.
- [51] Z. Soori, and A. Aminataei, High-Order Difference Scheme for the Solution of Linear Time Fractional KleinGordon Equation, Num. Meth. Partial Diff. Eq., 30(4) (2014), 1234-1253.
- [52] M. Stojanovic, and R. Gorenflo, Nonlinear two term time fractional diffusion-wave problem, Nonlinear Anal. real, 11 (2010), 3512-3523.
- [53] O. Tasbozan, and A. Esen, Quadratic B-Spline Galerkin Method for Numerical Solutions of Fractional Telegraph Equations, Bulletin Math. Sci. Appl., 18 (2017), 23-39.
- [54] M. Zhang, X. Xie, J. Manafian, O. A. Ilhan, and G. Singh, Characteristics of the new multiple rogue wave solutions to the fractional generalized CBS-BK equation, J. Adv. Res., 38 (2022), 131-142.
- [55] Y. Zhou, F. Jiao, and J. Li, Existence and uniqueness for fractional neutral differential equations with infinite delay, Nonlinear Anal., 71 (2009), 3249-3256.
- [56] P. Zhuang, F. Liu, V. Anh, and I. Turner, Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term, SIAM J. Numer. Anal., 47 (2009), 1760-1781.
|