
تعداد نشریات | 45 |
تعداد شمارهها | 1,383 |
تعداد مقالات | 16,914 |
تعداد مشاهده مقاله | 54,470,704 |
تعداد دریافت فایل اصل مقاله | 17,127,406 |
High-order numerical solution for a class of nonlinear Fredholm integro-differential equations | ||
Computational Methods for Differential Equations | ||
مقاله 24، دوره 13، شماره 3، مهر 2025، صفحه 1059-1073 اصل مقاله (679.18 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22034/cmde.2024.58818.2489 | ||
نویسندگان | ||
Sadegh Amiri* ؛ Mohammad Eshaghnezhad | ||
Department of Basic Sciences, Shahid Sattari Aeronautical University of Science and Technology P.O. Box: 13846-63113, Tehran, Iran. | ||
چکیده | ||
The main objective of this work is to present a high-order numerical method to solve a class of nonlinear Fredholm integro-differential equations. By multiplying appropriate efficient factors and constructing an appropriate approximate function, as well as employing a numerical integration method of order $\gamma$, the above-mentioned problem can be simplified to a nonlinear system of algebraic equations. Furthermore, we discuss the convergence analysis of the presented method in detail and demonstrate that it converges with an order $\mathcal{O}(h^{3.5})$ in the $L^2$-norm. Some test examples are provided to demonstrate that the claimed order of convergence is obtained. | ||
کلیدواژهها | ||
Efficient factors؛ Approximate function؛ Nonlinear algebraic system؛ Convergence analysis؛ Order of convergence | ||
آمار تعداد مشاهده مقاله: 150 تعداد دریافت فایل اصل مقاله: 271 |